

Release 2.5

User Manual

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 2 of 156

1. INTRODUCTION

1.1. INTRODUCING OPENSPHERE

1.1.1. OVERVIEW

Developing large projects in distributed environments is never a simple task. Being dependent from

other teams makes it hard or sometimes even impossible to develop and test parts of the project

under one’s responsibility. Opensphere can simulate system components which aren’t available yet,

allowing to progress with development on schedule and independently from other teams. The built in

testing framework enables executing regular regression test runs making sure the product is

thoroughly tested before the delivery.

Opensphere is a client application that supports and simplifies the daily work of people that have to

deal with technical aspects within a complex system integration environment. EAI consultants,

software developers, system integrators and testers through Opensphere get offered an easy to use

and powerful framework that speeds up analysis, development and testing of message based

middleware, database dependent applications and custom components. Opensphere is based on

persistent projects that can freely be structured and configured to meet personal needs and

preferences.

The Opensphere application offers a comprehensive but easy to use graphical user interface that lets

you build projects with individual structure each, easily configure and execute components based on

 User Manual . Opensphere Release 2.5

Page 3 of 156 copyright © centeractive ag

Tibco Rendezvous®, JMS (Apache ActiveMQ™, TIBCO EMS™, HornetQ, OpenJMS, SonicMQ, SwiftMQ

etc.), web services, databases etc., widely exchange data and run tests with complex comparison

rules.

Opensphere makes use of XML for comparing complex data structures (including nested XML), to

maintain the project structure, single components and the application state over session boundaries.

Components and projects can easily be exported to XML files and shared with other team members

that may import them into their projects or may use them in other tools such as rvscript.

The Application does not require any server installation itself but is ready to be used within a few

minutes. The program is based on Java and can therefore be used on most operation systems.

1.1.2. TESTING

1.1.2.1. TESTING FRAMEWORK

Effective testing of integration solutions starts right at the beginning of integration projects. The

Opensphere testing framework lets you develop tests in parallel to the software engineering process

and maintain them during the whole product lifecycle. Reusability in software development is quite

a common requirement; this software applies it on test modules as well.

However, the Opensphere automated testing framework does not only reuse proven

components, it also provides comprehensive support in multiple domains.

 Project specific test configuration and structuring

 Test suites

 Graphical test case editor

 Graphical comparison rule editor

 Message reporting, publishing and comparing for WebService, JMS and Tibco Rendezvous®

 Comparing of XML structures applying user configured comparison rules

 Comparing of data retrieved from databases

 Automatic reporting (publishing) of testing results

 Running tests in batch mode through Apache Ant

The result of an integration test is often limited to a statement reflecting its success and it hopefully

provides some information on the source component and the data that got produced. Within an

systems integration environment, a business process may fail due to an unavailable system, an

incompatible interface, some version mismatch etc. If a test fails, we need more information than just

above mentioned items, we are also interested in intermediate data, messages being exchanged,

system availability and further details that will help us to quickly locate the source of a potential

problem. And of course we also need detailed information about the cause of an error.

Opensphere enables you to build tests that generate such detailed reports that you will be able to

quickly find most errors. The application contains a test engine driven by user defined test suites that

contain a number of test cases with a graphical configurable test flow each. Comparison rules can be

defined for entire messages through simple mouse clicks; this also includes nested XML structures. In

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 4 of 156

case of special needs, experts get full control over generated XPath expressions and can even extend

the powerful comparison rules generated by default.

1.1.2.2. AUTOMATED REGRESSION TESTING

Supporting a proven testing methodology, Opensphere lets you build sets of regression tests adjusted

to your project specific requirements. Once the tests are built, they can be run at any time yielding

immediate and detailed reports of the test results.

This automated regression testing approach strongly improves the reliability of integration

solutions. It is a key enabler for enterprises to adapt their systems to changing requirements on time

and to budget.

1.1.3. TIBCO INTEGRATION

Opensphere enables you to simply create, edit, change, save and record Tibco Rendezvous® and Tibco

EMS™ messages. Dedicated project tree nodes allow sending and receiving messages upon simple

mouse click. Subscriber or consumer nodes can automatically reply to the received messages by

sending predefined messages whereas other dynamic nodes act as powerful application simulators.

1.1.3.1. PREREQUISITES

Creating RV/EMS Publisher and Subscriber, JMS Message Producer and Consumer, Webservice Client

and Server components within Opensphere doesn’t require any knowledge of the specific program

libraries (APIs) nor any programming language skills at all. It's as easy as to work with your preferred

text editing program!

1.1.3.2. PERSISTENCE AND SCRIPTING

Opensphere projects are stored in XML files and automatically reloaded at application start-up. TIBCO

Rendezvous® messages recorded with the RV Message Detector or created through the RV Message

Editor can individually be saved to XML files and be reused elsewhere. The RV Subscriber and the RV

Application Simulator modules as well can be configured to automatically write all recorded

Rendezvous® messages to a reusable XML file.

The configuration of program modules such as the RV Application Simulator can be exported to an

XML file and be reloaded at any time into another project or be used in another application. Messages

and configured programs can also be saved to the rvscript format, the all-purpose scripting tool for

TIBCO Rendezvous®. A program module present in the rvscript format is fully functional and behaves

same as if run within the RV Tool Collection. Generated RV programs however are not supposed to be

used in a productive environment but will help build complex systems but also greatly improve and

speed up the development and test process within your company.

 User Manual . Opensphere Release 2.5

Page 5 of 156 copyright © centeractive ag

1.1.4. DATABASE SUPPORT

Opensphere offers comprehensive database support in various functional areas. SQL statements can

also be executed from independent nodes or within test steps either to initialize tables, to simulate a

component or to compare values from different tables on a same or on distinct databases.

1.1.5. GRAPHICAL USER INTERFACE

The Opensphere graphical user interface (GUI) provides a single window that is equipped to handle

the complete range of functionality provided. The driving component is the left located tree based

browser that shows the user defined structure of the active project. Every tree node has its associated

detail view that is displayed right to the project browser as soon as the node gets selected. By right

clicking a node, a menu pops up that contains all functions that can be invoked on the specific node.

The main window contains a menu bar and a tool bar that offer global functions or functions shared

by different node types. Some of the detail views however contain additional tool bars offering

context specific functionality. An optional displayed tabbed pane located on the windows bottom

contains a variable number of worker panels.

Extra non project specific tools such as the Tibco Rendezvous® message detector may also be added

to the window and stay there as floating dialog or can be docked as working panel.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 6 of 156

 Window Element Description

Main Menu Provides access to many menus, such as File, Project and Tools.

Main Toolbar Provides shortcuts to commands. Its buttons are grouped by functionality.
Some of them are activated or deactivated respectively according to the
current selected project node.

Project Browser Displays the content (structure) of the current project. Place the mouse
pointer on a node and press the left mouse button to get its relevant details
displayed right to the project browser. Right-click any node to get a pop-up
menu displayed that contains all available methods that can be invoked on
that node.
A double-click on most nodes displays their property dialog.

Node Detail View Shows the relevant runtime details of the current selected project tree
node. The detail view of a folder node for example contains several internal
windows representing the console of all direct depending executable nodes;
the detail view of a test case detail view contains a tabbed pane showing
different views on the test case each. Further properties of a node can be
shown by right-clicking it and select the appropriate item from the popped
up menu.

Worker Panel Shows information on processes running in the background or running in
parallel to the interactive GUI process. Most worker panels are instances of
a message pane (see below).

1.1.5.1. NOTIFICATION PANES

Opensphere uses special panes to show notifications on a specific topic; they are used to report work

progress, results of comparison programs etc. Notifications are displayed with different colors

depending on their type. The notification pane offers a table view and a text view; the table view

summarizes information and may hide details that would all be visible in the text view. Details of a

single table row are displayed in a dialog when a mouse click occurs on the row. To give a quick

overview on something and for performance reasons, the table view is most often used by default.

You can change between table and text view by selecting the appropriate item in the pop-up menu

that appears when you right click inside the message pane.

1.1.5.2. CONSOLES

 User Manual . Opensphere Release 2.5

Page 7 of 156 copyright © centeractive ag

Consoles are message panels that show process activity and add functions accessible through a pop-

up menu; they are used to observe and control the execution of processes. Consoles appear in the

detail views of executable nodes. The appearance of consoles can be changed through the option

dialog shown beside that gets displayed if you right click inside a console and choose the item Console

Options… from the pop-up menu. Alternatively those same options can be changed in the tools

options dialog that appears when the item Tool > Tool Options… from the main menu gets selected.

The new settings are applied to all consoles within the application.

1.1.6. TOOL OPTIONS

The basic behavior of Opensphere can be customized through the Tool Options dialog that is invoked

by selecting the menu item Tool > Tool Options… from the main menu. The left located menu tree lets

you select the item of your choice in order to change the related configuration.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 8 of 156

1.1.6.1. PATHS

The „Paths“ panel lets you define the following file system options.

Option Description

Projects Directory The parent directory on the file system where the program proposes
to save new Opensphere projects

Test Publishing Directory Default location (directory from the file system) to be proposed by the
application when test suite results are published. If this option is not
set, the location proposed will be the “pub” directory within the
current project folder.

1.1.6.2. FILE

On the „File“ panel you can define the following options.

Option Description

Open last project on
program start

Defines whether the last visited project should be loaded
automatically if the application is launched

Create backup copy when
saving project

Specifies whether a backup copy of the previous file content should
be created each time the project file is saved. The backup copies are
saved into the “backup” folder of the current project directory. The
name of the backup file has the following format
<yyyyMMss_HHmmss>_<project file name> (i.e.
20040728_154619_myProject.osp)

Automatically define name
and location of messaging
component files

Specifies whether message files are automatically created to a
location that corresponds to the project structure.

 If this option is selected and a property dialog of a messaging
component (i.e. RV Publisher or JMS Consumer) is closed
without indicating where to save the message(s), the messaging
component node path will determine the location of the
message file and the messages get stored automatically by
Opensphere when the property dialog is closed by pressing the
“OK” button.

 If this option is not selected, the user must himself specify the
location of the message file within a file chooser dialog.

Create backup copy when
saving messages

Specifies whether a backup copy of the previous file content should
be created each time a Tibco Rendezvous® message file is saved. The
backup copies are saved into the same directory as the original
message. The name of the backup file has the following format:

bck_<yyyyMMss_HHmmss>_<file-name>

(i.e. bck_20040728_162613_employees.rvm)

Store text data within
CDATA section

Indicates that text data contained in message components has to be
put within CDATA sections when a message is transformed to XML. If
this radio box is selected and some text data contains itself a
character sequence that terminates the CDATA section ("]]>"), all
special character get escaped and the data is not set within a CDATA
section.

 User Manual . Opensphere Release 2.5

Page 9 of 156 copyright © centeractive ag

Option Description

Use escape characters when
storing text data

Specifies that text data contained in message components get all
special characters escaped when a message is transformed to XML.

1.1.6.3. GUI

Select the „GUI“ panel for defining options related to the behavior and appearance of the graphical

user interface.

Option Description

Message Editor
Hide comparison rule panel
by default

Determines whether the comparison rule panel in the message list
editor shall be shown or hidden by default when switching to
comparison rule editing (menu item View > Show Comparison Rules).
If this check box is selected, the user is still enabled to show the
comparison rule panel at any time by simply activating the related

toggle button on the editor tool bar.

XML Editor
Hide attribute panel by
default

Indicates whether the attribute panel located below the XML tree
structure panel has to be hidden when opening a new XML editor.

XML Editor
Hide comparison rule panel
by default

Determines whether the comparison rule panel in the XML editor has
to be shown or hidden by default when switching to comparison rule
editing (menu item View > Show Comparison Rules). If this check box
is selected, the user is still enabled to show the comparison rule

panel at any time by simply activating the related toggle button
on the editor tool bar.

Worker Panel
Keep message detector tab
always in front

Select this check box if you want to keep the Tibco Rendezvous®
message detector worker panel to stay always in front when new
tabs get added. This is especially useful when running a series of test
suites that get all their own worker panel added to the bottom of the
application. That allows the tester to monitor the ongoing overall
message flow.

1.1.6.4. CONSOLE

The “Console” panel lets you define the look and feel of consoles. Consoles are message panels that

show process activity and add functions accessible through a pop-up menu; they are used to observe

and control the execution of processes. Consoles appear in the detail views of executable nodes.

Property Description

Screen Buffer Size Specifies the number of messages the console should keep in the buffer. If a
new message gets added to the console and the buffer size exceeds, the
oldest message gets removed. When choosing the buffer size, consider the
number of executable nodes within your Opensphere projects. Every
executable node has its own console that may buffer message up to the
specified size.
Choosing a high buffer size with lots of executable nodes may cause the
application to run out of memory.

Background Color Determines the background color of the consoles.

Selection Color Determines the background color of the selected row or message

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 10 of 156

Property Description

Text Color
Information

Specifies the text color to be used for displaying messages of type
“Information”

Text Color Warnings Specifies the text color to be used for displaying messages of type
“Warning”

Text Color Errors Specifies the text color to be used for displaying messages of type “Error”

Selected Text Color Determines the text color of a selected row or message

Font Defines the overall font to be used in the console

1.1.6.5. JMS PROVIDER

Opensphere is not shipped itself with any JMS product specific libraries. The “JMS Provider” panel lets

you define JMS providers required for using Opensphere with the JMS products of your choice. The

top located list on the panel contains an item for every JMS Provider defined for the current instance

of Opensphere. Using the right located buttons, you can simply add a new JMS provider definition or

you can remove the current selected one.

When configuring JMS providers, you basically tell Opensphere where to find the Java classes that are

required to act as a client towards a particular JMS implementation (product). Depending on the

available classes, you then define one to three connection templates and optionally also an admin

class. The connection templates are then available within Opensphere when you define a JMS

component (i.e. JMS Message Consumer).

The “JMS Provider Details” box shows the details of the current selected JMS provider according to

the table below.

Property Description

Name Name of the JMS provider (i.e. “Tibco EMS”) that must be unique between all
JMS provider definitions. The JMS provider name gets referenced by JMS
components you define in your project (i.e. a JMS Queue Browser) but also
from within JMS listener definitions mad for the Message Detector. Therefore
be careful when choosing the name and avoid changing it if it is still referenced
somewhere. If you may think of working with different releases of the same
JMS product simultaneously, it is advised to include the release number in the
name straight from the beginning.

 User Manual . Opensphere Release 2.5

Page 11 of 156 copyright © centeractive ag

Property Description

Java Libraries This list contains all Java archives (.jar and/or .zip files) used by a client of the
defined JMS provider. Since Opensphere acts as a client through its
configurable components (Message Detector, JMS Message Producer etc.), it
needs to have access to related Java classes. Such classes are the factory classes
for creating connections to the related JMS server or admin classes that let you
retrieve information about available destinations.

When adding a new JMS provider definition, Opensphere automatically adds
the Java archive files present in the folder

<OPENSPHERE_HOME>/lib/jmsAdmin. These files contain a set of
predefined admin classes for known JMS provider. From the file chooser dialog
that pops up, you now have to select the required provider specific Java archive

files. Using the button, you can add missing Java archive files at any time

later or you can remove selected unnecessary ones using the button.

Opensphere scans the specified Java archive files for factory classes and admin
classes and provides them within the appropriate bottom located tab labeled
“JNDI”, “Queue”, “Topic” or “Admin” for further selection.

JNDI This panel lets you define a template for JMS connection definitions through
the Java Naming and Directory Interface (JNDI).

The Initial Context Factory combo box contains all classes found in the defined
Java archive files that implement the following interface:

javax.naming.spi.InitialContextFactory

The Available Properties list contains all available JNDI properties except the
ones that are already assigned to the selected initial context factory.

The Selected Properties table shows the properties already assigned to the

selected initial context factory. By pressing the button or the button, you
can easily add or remove single or multiple selected properties. The buttons

 and let you change the position of single assigned properties. You can
define a default value for individual properties if you like, this is especially
useful if the final property value needs to comply to a certain pattern (i.e.
“tibjmsnaming://host:port”).

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 12 of 156

Property Description

Queue This panel lets you define a template for JMS queue connection definitions.

The Connection Factory combo box contains all classes found in the defined
Java archive files that implement the following interface:

javax.jms.QueueConnectionFactory

The Available Properties list contains all properties available for the selected
queue connection factory except the ones that are already assigned to it.

The Selected Properties table shows the properties already assigned to the

selected queue connection factory. By pressing the button or the button,
you can easily add or remove single or multiple selected properties. The

buttons and let you change the position of single assigned
properties. You can define a default value for individual properties if you like,
this is especially useful if the final property value needs to comply to a certain
pattern (i.e. “tcp://host:7222”).

Topic This panel lets you define a template for JMS topic connection definitions.

The Connection Factory combo box contains all classes found in the defined
Java archive files that implement the following interface:

javax.jms.TopicConnectionFactory

The Available Properties list contains all properties available for the selected
topic connection factory except the ones that are already assigned to it.

The Selected Properties table shows the properties already assigned to the

selected topic connection factory. By pressing the button or the button,
you can easily add or remove single or multiple selected properties. The

buttons and let you change the position of single assigned
properties. You can define a default value for individual properties if you like,
this is especially useful if the final property value needs to comply to a certain
pattern (i.e. “tcp://host:7222”).

Admin This panel lets you define an administrator class used to show and retrieve
available destinations.

The Admin Class combo box contains all classes found in the defined Java
archive files that implement the following interface:

com.centeractive.opensphere.msg.jms.admin.JMSAdmin

If the file openSphereJMSAdmin_n_n.jar from the directory

<OPENSPHERE_HOME>/lib/jmsAdmin is defined in the list of java
libraries, a few admin classes for well-known JMS providers will be available by
default. If there is no predefined admin class available for your JMS provider,

you can write your own by implementing above mentioned JMSAdmin

interface. The javadoc for the JMSAdmin interface can be found in the
appendix at the end of this document, the binary code is contained in the
openSphere_n_n.jar that is located in the folder

<OPENSPHERE_HOME>/lib.

 User Manual . Opensphere Release 2.5

Page 13 of 156 copyright © centeractive ag

1.1.6.6. DATABASE/JDBC

The “Database/JDBC” panel lets you define options related to database connections, please consult

the section “Database Support”.

1.1.6.7. STARTUP

Here you can specify whether at program startup you want to be notified when a new version of

Opensphere is ready for download.

1.2. GETTING STARTED

To work with Opensphere, you must first create a project by choosing the menu item File > New

Project. Within the displayed project options dialog you have to enter a project name and a working

directory. Optionally you can define project default settings for Tibco Rendezvous®. The entered

options can be changed later on.

When the dialog is closed through the OK button, the project node appears in the project browser,

ready to get dependent nodes created underneath. Such nodes are added using the Project menu

within the main menu or by right-clicking on the project node and choosing the appropriate add item.

The project structure can freely be composed and adapted to the needs of the user. Direct dependent

nodes of the project node can be folders or test suites; folder nodes may contain other folders or any

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 14 of 156

kind of executable node; test suites contain 1-to-n test cases. Dependent nodes may themselves

contain a certain number of dependents.

When a new node is added as a dependent of an existing node, its property dialog is shown and lets

you configure the component. This property dialog can be shown again at any time by right-clicking

the node and choosing ‘Properties…’ from the popped up menu or by double-clicking a selected node.

Most property dialogs are non-modal to allow you to compare and copy the settings between

different modes.

 User Manual . Opensphere Release 2.5

Page 15 of 156 copyright © centeractive ag

2. OPENSPHERE PROJECTS

To take full advantage of the comprehensive functionality of the application, you will have to work

within a project. An Opensphere project is a freely composed hierarchical tree structure containing

group nodes and atomic nodes (leafs) that offer specific functionality each. Meanwhile a folder node

simply provides a view on console windows of dependent executable nodes (multiple-document

interface), a simulator node for example is fully configurable and acts like an independent server

program.

2.1. PROJECT STRUCTURE

2.1.1. FILE SYSTEM

When a new project is defined in the project property dialog a project folder

(folder named Welcome for the sample beside) is automatically created on the

file system within a directory you are free to choose. The name of the project

folder is identically with the project name that was defined in the dialog. The

project folder initially contains the project file and some reserved folders

Opensphere uses by default for exporting node definitions, publishing test suite

results, dynamically generating files and storing backup files of the project. The project structure on

the file system usually will grow as new nodes are added to the project.

Opensphere project files have the extension .osp and contain the XML formatted definition of the

project made through the graphical user interface. Resources such as Tibco Rendezvous® messages

that can be defined in the property dialogs of specific program tree nodes are not stored within the

project file itself. The resources are saved as independent files (i.e. extension .rvm for Tibco

Rendezvous® message files) and the project file will get that file path written to it. This path is a

relative reference to the project folder in case the resource file is underneath that folder or it is an

absolute path in case the resource file is stored somewhere else (outside the project file structure).

An overview of all file resources referenced (used) by the different components within your

Opensphere project can be obtained by selecting the “Resource Overview” tab that appears in the

detail view of the root project tree node.

In order to be able to easily move and/or exchange entire Opensphere projects without losing any

references to resources, it is recommended to store all your resources underneath the owning project

folder.

2.1.2. PROJECT BROWSER

The project structure appears as a tree within the Project Browser at the left side of the Opensphere

application, the top most and first appearing node being the project node. The project structure is

defined by the user by adding group and leaf nodes. The project node itself allows you to add a

restricted number of dependent node types, the so called top level nodes (folders and test suites).

Other group nodes accept dependent node types that make sense in the given context; a test case

node for example will only accept test step nodes.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 16 of 156

Every node within the project tree can be exported to a file and imported to other projects or simply

to another location within the same project. Exported nodes are of XML format and can easily be

shared with other people or archived for further use depending on your needs. Beside this feature,

every node offers other functionality that is accessible through the application toolbar (common

functions only) or through the pop-up menu that appears when you press the right mouse button

while its pointer is located on the node. A left mouse button double click on a selected node brings up

its property dialog that lets you customize the node.

2.2. PROJECT TREE NODES

 The project node is the root of each project. The subsequent described nodes may appear in the

project tree structure. Only common folders, databases and test suites can be added as direct

dependents to the project node.

2.2.1. PROJECT PROPERTIES

When creating a new project through the menu item File > New Project, the project properties dialog

gets displayed automatically and requires some data to be entered. The same dialog can be shown at

any time later by selecting the menu item Project > Project Properties… from the main menu.

 User Manual . Opensphere Release 2.5

Page 17 of 156 copyright © centeractive ag

2.2.1.1. GENERAL

On the „General“ panel you define the name and location of the Opensphere project.

Option Description

Project Name Name of the Opensphere project. When a new project is created, the
proposed project name is “New” and is best replaced by some more
appropriate name. Changing the project name for a new project does
automatically change the name of the project directory in the text field
below.
When a project file is created for a new project, it gets the name of the
project together with the extension .osp and it is placed in the project
directory.

Project Directory Directory on file system that gets the project data written to it by default.
Opensphere proposes a directory that is composed by the base “Projects
Directory” defined in the tool options dialog (“Paths” tab) and a dependent
folder that has the same name as the project (tool options can be changed
through the menu item Tool > Options…).
The project directory can be set for new projects only. For existing projects,
it is the folder that contains the project file.

2.2.1.2. WSDL CACHE

This panel shows the content of the project specific WSDL file cache and lets you add and remove

WSDL definitions to it. Please consult the section “SOAP Web Services” for further details.

2.2.1.3. SSL KEYSTORE CACHE

This panel shows the content of the project specific SSL keystore cache and lets you change its

definition. Opensphere uses keystores and trustores for performing web service communication over

a secure socket layer.

The action buttons located on top of the panel are shortly explained in the table below.

 Icon Description

Import SSL Certificate Imports an SSL certificate to the selected keystore

Remove Certificates Removes all certificates from the selected keystore

Create Keystore Creates a new empty keystore and adds it to the cache

Add Keystore File Addes an existing keystore file to the project specific cache

Delete Keystore Deletes the selected keystore from the cache

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 18 of 156

2.2.1.4. TIBCO

The „Tibco“ pages let you define project default settings for Tibco Rendezvous®.

Option Description

Tibco Rendezvous
Transport

Tibco Rendezvous® transport settings used for sending and receiving
messages from inside the project.

Rendezvous String
Encoding

Character encoding for converting between Java Unicode strings and
Rendezvous wire format strings. The default encoding depends on the
locale where Java is running.

2.2.1.5. TIBCO / RENDEZVOUS (ADVANCED)

Select the „Tibco / Rendezvous (Advanced)“ page to define advanced options for Tibco Rendezvous®.

Custom Editors

In the top area of the panel, you can define a number of custom editors for specific rendezvous field

data. Those editors get used when Tibco Rendezvous® messages will be edited in the message editor

dialog. Simply press the “add” button and define what custom editor to use for what kind of field

data. Every definition must specify the editor class together with one or several field identifiers such

as name, ID or data type. Opensphere always uses the editor where the most field identifiers match.

 User Manual . Opensphere Release 2.5

Page 19 of 156 copyright © centeractive ag

Option Description

Field Name Name of the Rendezvous message field

Field ID ID of the Rendezvous message field

Data Type Data type of the Rendezvous message field

Editor Class Name The full name of a class that extends the editor class
com.centeractive.opensphere.msg.JCustomDataEditor. This

abstract class has the following methods that are invoked by Opensphere to set
Rendezvous field data and to determine whether this data is editable. In case it
is editable, Opensphere makes sure, the edited value gets written back to the
corresponding Rendezvous message field.

public boolean isEditable()

This method indicates whether the field data is editable. If this method returns
true, the method getData has to be overwritten to return the data contained in
the editor

public Object getData()

This method returns the data contained in the editor. This method gets invoked
by Opensphere only in case the method isEditable returns true

abstract public void setData(Object data)

This method sets the data to be contained in the editor. This method gets
invoked by Opensphere each time the Rendezvous field node gets selected in
the message editor

User Data Type Handler (Encoder/Decoder)

In the bottom area of the panel you can define a class that is responsible for encoding and/or

decoding Rendezvous user types.

Option Description

Handler Class
Name

The full name of a class that implements the interfaces

com.tibco.tibrv.TibrvMsgEncoder and/or
com.tibco.tibrv.TibrvMsgDecoder

User Data Types Comma separated integer values between TibrvMsg.USER_FIRST(128) and

TibrvMsg.USER_LAST(255) each. The class TibrvMsg is in the package

com.tibco.tibrv.

2.2.2. EXPORTING AND IMPORTING NODES

Every dependent project node can be exported to an XML file through the “export” button

located in the main toolbar or through the node specific pop-up menu. This allows you to share

components with other users or to reuse them in other Opensphere projects.

To import a node under the new parent node, you have to press the “import” button or to select

the corresponding menu item within the node specific pop-up menu. Executable nodes and test step

nodes are interchangeable in the way that an exported executable node can be imported as a test

step of the same type (i.e. Rendezvous Generic Publisher).

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 20 of 156

2.2.3. FOLDER

The folder can contain any executable node and other folders. This node is also named group

viewer since it offers a view on all console windows of direct dependent executable nodes. This way

its detail view looks like a multiple-document interface (MDI) or desktop. Console windows can be

arranged through the “Window” menu; you have the choice between horizontally, vertically and

cascading arrangement.

The folder view has its own toolbox where a button appears for every node type that can be added to

the folder. The folder accepts other folders as well as executable node (see below) as its dependents.

When the start button is pressed while a certain folder within the project tree is selected, all its direct

dependent executable nodes are started. The same, if the stop button on a selected folder is pressed,

all its direct dependent executable nodes stop running.

2.2.4. EXECUTABLE NODE

The executable node is an embedded program module or process that runs under the control of the

Opensphere application. The complexity of the executable nodes varies a lot; it may be a simple

operating system command, a SQL Processor or a configurable Tibco Rendezvous® application

simulator to mention only three of them. The following table gives an overview of all executable

nodes that can be added to a folder node. Depending on how your Opensphere program was

installed, some of these nodes however may not be available.

Executable Type Description

 OS Command
Executor

Represents an operating system command, an independent program or a
batch file.

 RV Publisher This node acts as publisher for a single or collection of distinct Tibco
Rendezvous® message. It is easy configurable through its option dialog.
Depending on the user settings, it re-sends the message on the chosen
interval. The content of the published messages as well as the received
replay message is be displayed in the console. The message can be
imported, freely edited and saved to an external file using the in-built tree
based message editor.

 RV Subscriber This node subscribes to a Tibco Rendezvous® subject or a subject
hierarchy and receives corresponding messages. It is easy configurable
through its option dialog. Depending on the user settings it buffers
inbound messages and lets them display in the message editor dialog. It is
also able to reply to received messages by sending one or several
predefined reply and forward messages. Single messages or message
collection can be imported, freely edited and saved to a file using the in-
built tree based message editor.

 User Manual . Opensphere Release 2.5

Page 21 of 156 copyright © centeractive ag

Executable Type Description

 RV Application
Simulator

The RV Application Simulator node is an extension of the RV Subscriber
node and is useful where a dummy implementation of Rendezvous
components such as adapters is needed to be able to test dependent
programs. The nodes property dialog contains a mapper where the fields
of the hypothetical inbound message can individually be assigned to fields
of one or several outbound messages with different structure each. During
program execution, the values of those fields are automatically copied
from the source (inbound message) to the target field and those
dynamically built messages are replayed or forwarded on the defined
subject.

 JMS Message
Producer

The JMS Message Producer allows you to send JMS messages and provides
support for both the point-to-point and the publish/subscribe domains.
You can import, modify or create the message to be sent, define the
number of iterations and the interval to be observed between.

 JMS Message
Consumer

The JMS Message Consumer allows you to receive JMS messages and
provides support for both the point-to-point and the publish/subscribe
domains

 JMS Queue Browser The JMS Queue Browser acts as the JMS Message Consumer but is
restricted to Queue and allow you to download all messages currently in
the specified Queue without removing them.

 Web Service Client
(HTTP)

This node is responsible for invoking sends SOAP messages over HTTP to
invoke operations on remote web services. The component gets
generated from a WSDL file the user has to choose. Available operations
can be selected to create operation invocations with user defined
arguments. The client is easily configurable and able to invoke different
operations with different arguments, to repeat invocations, to store the
responses etc.

 Web Service Client
(JMS)

This node is similar to the above described “Web Service Client (HTTP)”
except that it uses JMS as the communication transport.

 Web Service Server This program node simulates a web server that offers a set of web services
that are dynamically added or removed. New service implementations are
generated from a WSDL file chosen by the user. For each operation, the
response can be freely defined and altered at any time.

 SQL Query Viewer The SQL Query Viewer executes a user defined SQL select statement on
any JDBC compatible database and shows the result in a table.

 SQL Processor The SQL Processor is used to perform SQL DDL and DML statements on
any JDBC compatible database.

The status of executable nodes within the project tree is shown by a small icon that gets applied on

top of the regular node icon. The following status icons can appear.

 Initializing

 initialized

 running

 terminated with error

 successfully performed

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 22 of 156

2.2.5. TEST SUITE

 The folder like test suite node is used to logically group series of test cases and run them in the

desired order. Test suites with all their dependent nodes can be published after execution in order to

be shown within a web browser. Test suites only appear as direct dependents of the project node

only.

2.2.6. TEST CASE

 Test cases depend on test suites and represent a certain number of test steps that are part of a

graphical definable process flow. The test case detail view is composed of several tabbed panels that

show a different aspect of the test case each. You have the choice between the test flow chart (test

logic), the test step consoles (execution monitor) and the result panel.

2.2.7. TEST STEP

Test steps (test tasks) are part of a test case and controlled by its test flow engine. The appearance of

them within the project tree depends on their functionality, which may be as simple as the sleeper

test step that interrupts the test case processing during the specified time; or it may be complex

such as the SQL Comparison test step that compares and reports data retrieved from one or two

distinct databases.

2.3. SUBSTITUTION VARIABLES

Opensphere lets you define substitution variables on project level within a single dialog. This is useful

where the same variable values are defined at several places within the project and especially also

when a project at some point needs to be adapted to a different environment. The substitution

variable dialog is invoked from the main menu through the menu Project > Substitution Variables… or

directly from the popup menu of the project node.

You may define as many substitution variables as you like, simply click the “add” button, then

enter the variable name and choose its type in the dialog shown above. The value of most

substitution variables can be edited directly in the table row as soon as the dialog gets closed. Some

types of substitution variables (i.e. JavaScript) let you define the value in a specific editor dialog. The

 User Manual . Opensphere Release 2.5

Page 23 of 156 copyright © centeractive ag

substitution variable value can be used in many places within the project for replacing substitution

variable markers, strings that corresponds to the variable name enclosed by the specified prefix and

postfix. Given the example substitution variable definition from the dialog shown above, the

substitution variable marker “%user%” would be replaced by the name of the current connected user.

The easiest way to enter a substitution variable marker in a text field is to click

the right mouse button while the cursor is positioned at the desired location

and then choose an entry from the substitution variable list (see sample

beside) that pops up next to the mouse pointer.

2.3.1. STRING SUBSTITUTION VARIABLES

Substitution variables by default are simple string literals that keep their value unchanged unless they

are explicitly modified by the user within the dialog.

2.3.2. PASSWORD SUBSTITUTION VARIABLES

Password substitution variables are string literals. Their real value is represented by a placeholder

character in order to be hidden to non-authorized people.

2.3.3. STRING APPENDER SUBSTITUTION VARIABLES

The string appender substitution variable can have an initial value or it can be empty at initialization.

Each time a substitution is made, a user defined string gets appended to the previous value. The value

of a string appender variable is reset to its initial value each time the start button gets pressed. It can

also be reset during test execution depending on the value chosen in the column titled “Reset”. The

following table explains in detail the behavior of the distinct values.

“Reset” Value Description

none The string appender value is not reset unless the start button gets pressed

per test suite The string appender value gets reset to its initial value each time a test suite
starts running

per test case The string appender value gets reset to its initial value each time a test case
starts running

per test step The string appender value gets reset to its initial value each time a test step
starts running

2.3.4. SEQUENCE SUBSTITUTION VARIABLES

Sequence substitution variables supply a value and get incremented each time they are used. The first

value supplied is the initial value defined within the substitution variable dialog. The number to be

used for incrementing the variable is defined in the dialog as well (column “Increment By”). The value

of a sequence variable is reset to its initial value each time the start button gets pressed. It can also be

reset during test execution depending on the value chosen in the column titled “Reset”. The following

table explains in detail the behavior of the distinct values.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 24 of 156

“Reset” Value Description

none The sequence value is not reset unless the start button gets pressed

per test suite The sequence value gets reset to its initial value each time a test suite starts
running

per test case The sequence value gets reset to its initial value each time a test case starts
running

per test step The sequence value gets reset to its initial value each time a test step starts
running

2.3.5. JAVASCRIPT SUBSTITUTION VARIABLES

The value of JavaScript substitution variables is generated at runtime from the execution of the

JavaScript code defined by the user. The feature uses the JavaScript engine Mozilla Rhino that

complies with JSR 223. Rhino reaches beyond JavaScript into Java as it allows you to write powerful

scripts quickly by making use of the many Java libraries available.

When editing JavaScript substitution variables, an editor dialog (see below) pops up that lets you

write the script code. This code must be terminated by an instruction that returns the substitution

value (i.e. “return myVar;”).

http://www.mozilla.org/rhino

 User Manual . Opensphere Release 2.5

Page 25 of 156 copyright © centeractive ag

Date Formatting Sample

Depending on the current date following code will produce a value similar to “Friday, 27.4.2012”.

//@@ keep this line unchanged when no main() function is defined @@//

var weekday = new Array("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday");

var now = new Date();

return weekday[now.getDay()] + ", " + now.getDate() + "." + now.getMonth() + "." + now.getFullYear();

Date Formatting Sample with main() method

If you remove the first line (//@@ keep this line unchanged…), Opensphere expects a main() method

it tries to execute. This main method must be parameter-less and its last instruction must return the

substitution value. Feel free to define other functions that are invoked from within the main method.

The script in the box below formats the date/time that is one hour in the future. Depending on the

current date following code will produce a value similar to “27.04.2012 16:24:38”.

// returns the specified number in two digit format
function format(num) {
 if (num < 10) {
 return "0" + num;
 }
 return num;
}

// returns the current date/time + 1 hour in the format 'dd.MM.yyyy HH:mm:ss'
function main() {
 now = new Date(new Date().getTime() + 3600000);
 return format(now.getDate()) + "." + format(now.getMonth() + 1) + "." + now.getFullYear()
 + " " + format(now.getHours()) + ":" + format(now.getMinutes()) + ":" + format(now.getSeconds()) ;
}

File Reading Sample (Java Style)

The following code reads a file on the local file system and provides its content.

//@@ keep this line unchanged when no main() function is defined @@//

data = java.lang.StringBuilder();

fileReader = new java.io.FileReader("readme.txt");

bufReader = new java.io.BufferedReader(fileReader);

while ((line = bufReader.readLine()) != null) {

 data.append(line + "\n");

}

bufReader.close();

return data.toString();

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 26 of 156

2.3.5.1. REQUESTING USER INPUT

The JavaScript substitution variable can also be used to request user input at runtime whenever the

value of a particular substitution variable is requested. To do so, you can use standard Java Swing

components. The following one line code sample illustrates how to request the user name.

//@@ keep this line unchanged when no main() function is defined @@//

return javax.swing.JOptionPane.showInputDialog("Please enter the user name");

Each time the value of such a substitution variable is requested, the following dialog will appear and

the value entered by the user becomes the actual value of the substitution variable.

2.3.6. JAVA BEAN METHOD SUBSTITUTION VARIABLES

The value of the Java bean method substitution variable is obtained by invoking a method from a Java

bean. This method does either not expect any argument or expect a single string argument. When

specifying a method, it needs to be fully qualified by its class name, the method name, a pair of

parenthesis and optionally the string argument. The string argument must be enclosed in double

quotes except if null for a null reference is explicitly specified. The specified class must have a

parameter-less that allows Opensphere to create new objects.

The chosen method may be present in the Java runtime environment or it may be written by the

customer. In the latter case, you need to include it in a JAR file that gets stored in the libext folder of

the Opensphere installation directory. If you write your own class, you can implement the interface

com.centeractive.opensphere.substitution.ResetableBean contained in the

lib/openSphere-n.n.n-obfuscated.jar file. This interface has a single method named reset. The reset

method will be invoked by Opensphere each time the start button gets pressed. It can also be invoked

during test execution depending on the value chosen in the column titled “Reset”. If the Java bean

does not implement the ResetableBean interface, Opensphere creates a new instance of the

class (a new bean) each time it would otherwise invoke the reset method.

The following table explains in detail the behavior of the distinct values of the “Reset” column.

“Reset” Value Description

none In case the start button gets pressed (in no other case), a new Java bean gets
instantiated. If the Java bean however implements the ResetableBean

interface, its reset method is invoked instead.

per test suite Each time a test suite starts running, a new Java bean gets instantiated. If the Java
bean however implements the ResetableBean interface, its reset method is

invoked instead.

per test case Each time a test case starts running, a new Java bean gets instantiated. If the Java
bean however implements the ResetableBean interface, its reset method is

invoked instead.

 User Manual . Opensphere Release 2.5

Page 27 of 156 copyright © centeractive ag

per test step Each time a test step starts running, a new Java bean gets instantiated. If the Java
bean however implements the ResetableBean interface, its reset method is

invoked instead.

In the Java runtime environment you can find Java bean like classes with methods that can be used as

data source for this type of substitution variables. Below you find a few examples of method

signatures that may help you solve a specific problem.

java.lang.Random.nextInt()

java.lang.StringBuffer.append("-")

java.util.concurrent.atomic.AtomicLong.getAndIncrement()

2.3.7. STATIC METHOD SUBSTITUTION VARIABLES

The value of the static method substitution variable is obtained by invoking a static method that does

either not expect any argument or expect a single string argument. When specifying a static method,

it needs to be fully qualified by its class name, the method name, a pair of parenthesis and optionally

the string argument. The string argument must be enclosed in double quotes except if null for a null

reference is explicitly specified.

In case you write your own class that provides a static method for this type of substitution variable,

you need to include it in a JAR file that gets stored in the libext folder of the Opensphere installation

directory. In the Java runtime environment you can also find classes with static methods that can be

used as data source for the static method substitution variables. Below you find a few examples of

method signatures that could help you in a specific situation.

java.lang.Math.random()

java.lang.System.getenv("JAVA_HOME")

java.lang.System.getProperty("user.name")

java.util.Locale.getDefault()

java.util.UUID.randomUUID()

Opensphere provides an inbuilt class with a handy static method that returns the current date as a

formatted string. The date/time pattern is the one used by the Java class SimpleDateFormat (see

http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html) and can be freely

composed by the user. The method signature to be entered in the “(Initial) Value” column of the

substitution variable dialog is the following;

com.centeractive.opensphere.substitution.inbuilt.CurrentDateFor

matter.format("<pattern>")

for example:

com.centeractive.opensphere.substitution.inbuilt.CurrentDateFor

matter.format("dd.MM.yyyy HH:mm:ss")

http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 28 of 156

2.3.8. DERIVED SUBSTITUTION VARIABLES

The value of derived substitution variables is produced at runtime performing one or a series of

commands that extract certain part of XML formatted data. The commands tell the program from

where to read the XML content and how to extract the relevant part. Commands are separated by the

pipe character (‘|’) and each command hands over its result to be taken as the source by the

following command. The table below lists available commands.

Command Description

file:<location> references an XML file that gets read from the file system

http:<location> references an XML file that gets read over HTTP

xpath:<XPath> reads the value at the referenced XPath location. This command expects an XML
formatted string as input and has to be preceded by "file:<location>",
“http:<location>” or another “xpath:<XPath>”.

The value entry must start with a command to be interpreted as a command or a sequence of

commands. It cannot just include it somewhere.

Example:

The following example shows how to extract a derived substitution value from an XML formatted

structure that is itself nested inside an XML file present on the local file system. The XML file

represents a Tibco Rendezvous® message with XML payload created through Opensphere.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!--

 Generated by Opensphere Release 1.3.0 / Tuesday 2005-05-28 08:39:30

 -->

<msgArray>

 <xMsg replyEnabled="true" forwardEnabled="false">

 <msg sendSubject="" replySubject="">

 <msgField name="ID" type="I16" id="0">10</msgField>

 <msgField name="Name" type="STRING" id="0"><![CDATA[XMLComparison]]></msgField>

 <msgField name="Document" type="MSG" id="0">

 <msgField name="XMLData" type="STRING" id="0"><![CDATA[<?xml version="1.0" encoding="UTF-8"?>

<person>

<name>Muller</name>

<firstname>Céline</firstname>

<address>

<street>Rua Gonzalez</street>

<ZIP>2001</ZIP>

<city>Genêve</city>

</address>

</person>

]]>

 </msgField>

 </msgField>

 </msg>

 <comparison/>

 </xMsg>

</msgArray>

Command: “file:C:/temp/XMLMessage.rvm|xpath://msgField[@name='XMLData']/text()|

xpath:/person/firstname/text()”

Resulting Value: “Céline”

 User Manual . Opensphere Release 2.5

Page 29 of 156 copyright © centeractive ag

2.3.9. SYSTEM PROPERTY SUBSTITUTION VARIABLES

This substitution variable allows you to use all Java System Properties available at runtime. After

naming your variable you can choose from the available System properties from a drop down box:

2.3.10. ENVIRONMENT VARIABLE SUBSTITUTION VARIABLES

An environment variable substitution variable allows you to use any external environment that you

may have set such as for example PATH.

After naming your variable you can choose from the available Environment Variables (at start-up)

from a drop down box:

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 30 of 156

3. BUILT-IN EDITORS

3.1. XML EDITOR

Opensphere contains a highly featured multi document XML Editor that gets invoked as standalone

application from the Windows start menu. A single document XML editor can be shown inside

Opensphere by selecting the menu item Tool > XML Editor. It also appears as inbuilt editor of other

components (i.e. inside the Tibco Rendezvous® message editor enabling you to edit nested XML data).

The XML editor lets you create or load a single document but also multiple documents. Each XML

document appears within its own internal frame or as a tabbed pane depending on your choice.

Documents are shown in a text view with color highlighting and a content assistant (see below). Left

of the text view, the document structure is represented by a tree where each element – including text

elements – appears as single tree nodes. The XML element detail view appears below the structure

tree view, it shows the element name together with the element attributes. All of the three views are

synchronized; if for example a certain tree node gets selected, its text representation gets marked

and its element detail view gets displayed. The XPath expression that uniquely identifies the selected

element is shown in addition in the status bar below the text view.

 User Manual . Opensphere Release 2.5

Page 31 of 156 copyright © centeractive ag

The buttons appearing on the XML Editor’s main tool bar and the one located on top of each structure

tree are explained in the table below.

Button Description

 New Creates a new XML document

 Open File Opens an existing XML file

 Save Saves the XML document to the file system

 Save As Saves the XML to a file chosen by the user

 Undo Undo the last action but this is a new document action

 Redo Redo the last action but to undo action has been called

 Cut Cut a text

 Copy Copy a text

 Paste Paste a text

 Search Parse the current document and show a tree for easily navigating

 Parse Parse the current document and show any error in red

 Format Formats the current XML text applying indentation

 Comment Comment the current tree node

 Split Split the current editor in two ones

 Run
Comparison

Starts comparing the two XML documents currently loaded in the editor

 Toggle Work
Tab Pane

Shows or hides the tabbed pane that contains the results or already performed
XML comparisons

 Select Node Select the current tree node in text

 Edit Text Node Opens an editor dialog and lets the user edit the current selected text tree node

 Expand All Expands the selected tree node and all its dependants

 Collapse All Collapses the selected tree node and all its dependants

3.1.1. EDITOR ASSISTANTS

XML content assistant is available for three parts:

1. Element completion (from a schema like DTD or W3C Schema)
2. Entity completion (from DTD declaration and default ones)
3. System completion like CDATA or comment. This completion is enabled by inserting

"<!".

The syntax assistant works in several ways:

1. By reading a DTD (relative to the current document or not). The DTD will be
automatically read for your current XML document each time it is saved, loaded or
parsed.

2. By reading a Schema (relative to the current document or not). The schema will be
automatically read for your current XML document each time it is saved, loaded or
parsed.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 32 of 156

A bookmark appears in the text editors left bar as an icon together with the colored line it belongs to.

The mark is set by a single mouse click inside the text editors left bar and removed by clicking on the

icon. When a bookmark is set, it follows each line change thus it stays bound to the right element.

Bookmarks are not persistent and will therefore disappear when a document is reloaded from the file

system.

3.1.2. CUSTOMIZING

There exists a convenient feature for application wide customizing of XML elements. Select the menu

item Tool > Configure XML Nodes.. in order to get the corresponding definition XML node definition

dialog displayed.

The dialog contains a pre-configured entries used by Opensphere, removing or changing them may

have an impact on XML comparison results. Feel free however to add new definitions in order to

obtain a custom view of your XML documents and to optimize the result when comparing your XML

documents.

 To change the icon of a node definition, click on the

corresponding cell and simply choose an icon from the pop up

dialog. Icons that appear in the dialog are grouped by

categories. Each category corresponds to a direct dependent

sub directory of the folder resources/xmlNodeIcons contained

in the Opensphere home directory. To make your own icons

available in the icon chooser, copy them to one of the existing

sub folders or create new ones that reflect the topic (category)

of the icons. Since the images are loaded at application start

up, you have to re-launch the program to see new ones in the

icon chooser dialog.

 User Manual . Opensphere Release 2.5

Page 33 of 156 copyright © centeractive ag

Each row from the dialogs table defines how to display an XML element in the structure tree of the

XML Editor and may define how to identify the XML element using XPath expressions. The following

table explains in detail how to set the values of single fields.

Column Description

Element
Name

The name of the XML element that is affected by this definition. This may be the
elements local name or the qualified name. The qualified name consists of a
namespace prefix and the local name, separated by a colon (i.e. “ot:person”).

Attribute Name of the attribute that uniquely identifies the element. The value of this
attribute is displayed beside the tree node instead of the element name. Either the
‘Attribute’ or the ‘Icon’ must be defined.

When an XML element is used for comparison and its node definition has the
‘Attribute’ specified, the XPath expression that identifies the element is different
from the default one. Accordingly the comparison result can be different as well.

Additional
Attribute

The ‘Additional Attribute’ is optional. The value of this element attribute is put inside
parenthesis and appended to the name of the structure tree node. There is no other
side effect as the one explained for the ‘Attribute’ setting.

Icon Image that is used for rendering the tree node that represents XML element within
structure tree. Either the ‘Icon’ or the ‘Attribute’ must be defined.

3.1.2.1. EXAMPLE

The example in this section illustrates how the Opensphere (Release 1.2.0) default XML node

definitions shown in the table below affects the appearance of an XML document in the structure tree

view of the XML Editor. The node definitions are the following.

Our example XML document represents a Tibco Rendezvous® message created through Opensphere.

The figure below shows a portion of that document as formatted text.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 34 of 156

The result of the rather simple node definitions is the surprisingly more readable XML structure tree

shown below.

Without XML node definitions With default XML node definitions

3.1.3. XML COMPARISON

Comparing XML structures is one of the core tasks within Opensphere. Sometimes it is done behind

the scenes but often it is explicitly defined and run by the user from within the XML Editor.

Comparisons run by the XML Editor always expect 2 loaded documents, one being the reference

document (expected data), the other one the checked document (current data).

3.1.3.1. COMPARISON RULE VIEW

A reference document is obtained by either loading a document that was last saved being in the

“Comparison Rule View” or by activating this view on any other document. To switch to the

“Comparison Rule View”, select the menu item View > Show Comparison Rules. The view shows an

additional panel on its bottom that is used for creating and maintaining comparison rules. Except in

full comparison mode, the XML comparison engine always expects user defined rules to perform fine.

Such rules identify single XML elements from both documents and specify the function to be used

when comparing their values. Alternatively an XML element can also be compared against a literal

value defined in the comparison rule or the function may simply check whether an element is empty

or not.

The “Comparison Rule View” is different from the default view also in the way that it shows the

comparison icon in front of each structure tree node. The icon may be enabled or disabled in

order to indicate whether a comparison rule is currently defined for the corresponding node.

Comparison rules can be created or removed by simply clicking on the icon. Alternatively you can

create or alter comparison rules directly within the bottom located rule table.

Such user defined rules however will not be reflected by an enabled icon within the structure tree

unless they use exactly the same XPath expression as if they were created by Opensphere.

 User Manual . Opensphere Release 2.5

Page 35 of 156 copyright © centeractive ag

Comparison rules define what value certain elements from an actual XML structure should contain to

be considered correct values. To be able to successfully locate XML nodes, they must be uniquely

identified by an XPath expression that is either generated by the editor or edited by the user. Each

comparison rule by default contains two XPath expressions, one for identifying the node to be

checked (actual value), the other one for identifying the node that holds the expected value (located

in the reference document). The expected value may alternatively be specified by a literal instead of

an XPath expression.

When creating a new comparison rule, its default function is “equals”. Another rule specific function

can be chosen from the combo box that appears in the function table cell. When comparison is done,

the selected function generates a default error text in case the expected value in not correct.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 36 of 156

The table below explains each item of a comparison rule in detail.

Comparison Rule
Attribute

Description

Value Path This attribute specifies the actual value from the XML formatted data that has
to be checked. It must be a valid XPath expression.

Function This attribute specifies the function that must be applied either on the actual
value only (i.e. “is empty”) or between the actual value and the expected value
(i.e. “is greater than”). Available functions are the following ones:

equal to The actual value must be the same as the expected
value

not equal to The actual value must be different from the expected
value

less then The actual value must be lexographically smaller then
the expected value. The comparison is based on the
Unicode value of each character in the strings.

greater then The actual value must be lexographically greater then
the expected value. The comparison is based on the
Unicode value of each character in the strings.

less or equal to The actual value must be lexographically smaller then
or equal to the expected value. The comparison is
based on the Unicode value of each character in the
strings.

greater or equal to The actual value must be lexographically greater then
or equal to the expected value. The comparison is
based on the Unicode value of each character in the
strings.

empty The actual value must be empty

not empty The actual value must not be empty

length The length of the actual value must the one specified
by the expected value. The expected value must be a
valid integer value.

contains The actual value must contain the expected value as a
substring

is contained in The actual value must be contained in the expected
value as a substring

starts with The actual value must start with the expected value

ends with The actual value must end with the expected value

Expected Value The expected value is also known as the reference value. It is usually a
predefined value that is specified either by an XPath expression or by a litter
value. The expected value is interpreted as literal in case it is enclosed by
quotation marks (“”), otherwise it is always considered to be an XPath
expression.

User Message The optional “User Message” gets added to the function message and lets you
produce some customized output.

 User Manual . Opensphere Release 2.5

Page 37 of 156 copyright © centeractive ag

3.1.4. COMPARISON MODES

According with the above explanations, we distinguish between the following comparison modes

supported by the XML Editor.

1. Full comparison

The XML document shown in the “Comparison Rule View” acts as the reference document

(driving document) meanwhile another document is the one that is checked. Comparison is

done by checking if the value of the text nodes from corresponding elements in both

documents is the same.

2. Rule only comparison

All comparison rules define their expected values as literals. The payload (XML data) of the

reference document in the “Comparison Rule View” is not considered and may be empty.

3. Specified node comparison

All comparison rules define their expected values as XPath expressions. The reference

document is expected to contain all the referenced nodes with some useful value.

4. combination of 2 and 3

3.1.4.1. RUN COMPARISON

The comparison is started through the “Run Comparison” button that gets only activated if the

editor contains two documents, one of them being in the “Comparison Rule View”. When comparison

is started, the XML Editor first arranges the internal frames one beside the other, the reference

document (expected data) always appearing right to the checked document (actual data). The

comparison result is shown in a new message pane in the bottom part of the editor.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 38 of 156

The comparison is driven either by the comparison rules or if there are no comparison rules defined, it

is driven by the reference document.

Rule driven

comparison

Every single comparison rule is evaluated and applied once, starting from the

rule appearing in the table’s first row going through the table until reaching the

last row. The following steps are performed for each rule.

1. Locate the XML element in the left appearing reference document if the

expected value is present as an XPath expression. This step is omitted if the

compare function does not expect a predefined expected value (i.e.

compare function “not empty”).

2. Locate the XML element in the checked document (actual data) that

appears in the right part of the editor.

3. Check the actual value using the compare function from the rule.

Depending on the function, it compares the value with the one extracted

from the reference document but it may also be more basic such as

checking the emptiness of the value.

4. Print the result in case the check fails

5. Optionally print a message in case verbose comparison is requested

Document driven If a document is displayed in “Comparison Rule View” but it does not have any

comparison rule defined, the comparison is driven by this document (reference

 User Manual . Opensphere Release 2.5

Page 39 of 156 copyright © centeractive ag

comparison document). It is considered to contain the expected data. The comparison

engine passes through the XML structure of the reference document and does

the following for every single element.

1. Locate the corresponding element from the checked document appearing

in the right part of the editor. To do so, it generates an XPath expression

from the reference element.

2. Print an error in case the element in the checked document cannot be

found. This prints for example /person[1]/name[1] not found

or

3. Compare the text values of both elements

4. Print the result in case the values are not identical

5. Optionally print a message in case verbose comparison is requested

Once the whole reference document has been traversed and the corresponding

option (see below) is selected, the comparison engine passes through the

checked document and does the following for every single element.

6. Locate the corresponding element from the reference document (again

using XPath)

7. Print an error in case the element in the reference document cannot be

found. This prints for example /person[1]/haircolor[1] not expected

The following comparison options can be selected or unselected through the menu Tool > Options

Verbose Comparison The comparison process by default only reports detail results in case

single comparisons fail. To get more detailed output, select the menu

item Verbose Comparison.

Full Structure Check When a document driven comparison (without explicit comparison

rules) is performed, elements from the checked document by default

are compared only in case they are also contained in the reference

document. Additional elements in the checked document are ignored.

If the Full Structure Check menu item is selected, the comparison is

done in both directions in order to get a full structure comparison.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 40 of 156

3.2. HTML EDITOR

Opensphere contains a fully featured HTML Editor that is used for editing and formatting the main

description of Opensphere projects as well as the description of various components. The figure

below shows the inbuilt HTML Editor on the test case property dialog. The available buttons are self -

describing as they can be found same on most other popular text editors.

3.3. HEXADECIMAL EDITOR

Frequently message and other data is present in raw format that cannot be interpreted as such by the

application. Sometimes however, you know about the internal format of such data and you want to

be able to edit it. The Opensphere embedded Hexadecimal Editor that gets invoked through the menu

item Tool>Hex Editor… enables you to see and edit binary data. The capture below shows how the

editor looks like.

 User Manual . Opensphere Release 2.5

Page 41 of 156 copyright © centeractive ag

The editor shows two horizontally arranged panes that offer both a different view on the same data

and that let you both edit that data. The left located pane shows a byte wise representation of the

document content. Depending on the current selected button, the representation – the base - is

hexadecimal, decimal or octal. The right pane shows for each line the corresponding textual

representation using the character encoding currently selected within the combo box located on the

tool bar.

Functions within the Hexadecimal Editor are triggered either through tool bar buttons or menu items

according to the following table:

Button Description

 Open File (CTRL+O) Load the content of the file into the editor

 Save (CTRL+S) Save data into a file

 Save As Save data into the specified file

 Undo (CTRL+Z) Undo previous changes

 Redo (CTRL+Y) Redo undone changes

 Search/Replace
(CTRL+F)

Search and maybe replace a given pattern

 Cut (CTRL+X) Cut selected data

 Copy (CTRL+C) Copy selected data

 Paste (CTRL+V) Paste data from clipboard

 Goto Go to the specified index

Hexadecimal
Display bytes in hexadecimal representation

Decimal
Display bytes in decimal representation

Octal
Display bytes in octal representation

Encoding The character encoding used for representing the textual
representation of the content can be changed at any time by selecting
the appropriate value from the combo box

3.4. OBJECT FORM EDITOR

This feature is in experimental mode and not yet activated

The object form editor lets you edit a complex structured entity in an intuitive way. Nested elements

can be added or removed through a simple click on a button; nested structures can be expanded and

collapsed, list elements moved to another position. Specific field editors provide assistance to

improve the edition of data of a certain type (i.e. date/time).

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 42 of 156

The buttons appearing on the editor are the following:

Button Description

 Add Adds a property (field) from the object or an element from the list

 Remove Removes a property (field) from the object or an element from the list

Collapses the sub-structure

 Expands the sub-structure

 Moves the element with the focus up by one position in the list

 Moves the element with the focus down by one position in the list

 Shows a text editor for the field the editor button appears beside

 Edit Date/Time Shows an editor from where the user can easily choose the date and time for
the field the editor button appears beside

3.5. ROW SET EDITOR

The Row Set Editor is used to define row sets (tabular data) that gets used as processing trigger for

messaging components such as the JMS Message Producer, the RV Publisher or the Web Service

Client. The source of a row set can be either an SQL select statement or static data that gets manually

edited and stored in an XML file.

 User Manual . Opensphere Release 2.5

Page 43 of 156 copyright © centeractive ag

Each row of a row set is a trigger for sending (publishing) all messages - or invoking the operations -

that are defined for the messaging component. The field values from the triggering row can be used

to replace substitution value markers anywhere in the published message

or operation invocation. Substitution value markers correspond to the field

(column) name enclosed by the substitution variable prefix and postfix that

are defined in the substitution variable dialog (menu Project > Substitution

Variables…).

The easiest way to enter a substitution variable marker in a text field is to

click the right mouse button while the cursor is positioned at the desired

location and then choose an entry from the substitution variable list that

pops up next to the mouse pointer. The top six substitution variable from

the sample beside represent column names from the local row set, the

remaining ones are defined for the entire project.

3.5.1. SQL QUERY

The “SQL Query” appears if you select the appropriate named radio button top left of the editor

dialog. You have to define a database connection and a single select statement that will retrieve the

data (result set) at runtime. Already defined database connections can be changed at any time.

The SQL editor offers basic syntax highlighting and allows to write comment either as line comment

with leading double slashes (// line comment) or as block comment that is delimited by a couple of a

slash and a star (/* block comment */).

The syntactical correctness of the entered SELECT statements is checked when the “Check” button is

pressed. If the used JDBC driver supports pre-compilation, the check method will send the statement

to the database for pre-compilation. Some drivers do not support pre-compilation. In this case, the

statement will not be sent to the database until it is executed and only the starting key word is then

checked.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 44 of 156

3.5.2. MANUALLY EDITED DATA

If you select the top left located radio button labeled “Static Data”, the data has to be entered

manually into a table. The table structure (number and name of the columns) gets defined by the user

within a dialog that pops up upon mouse click on the button. Table rows can be arranged by

moving them up or down. The entered data is finally stored to a user chosen XML file from where it

will be read again at component runtime.

The items that appear on top of the manually entered reference data table are the following.

Item Description

 Open File Opens an XML file and loads its content into the table. Any previous
loaded data will be removed and the table structure will correspond to
the one defined in the loaded file

 Save Saves the table data back to the XML file. If no file has been defined yet,
a file chooser dialog is displayed and lets the user chose the file.

 Save As Saves the table data into an XML file chosen by the user

 Define Columns Opens a dialog that lets the user
define the table columns.

Single columns can be added,
removed or simply be moved to
another position.

 User Manual . Opensphere Release 2.5

Page 45 of 156 copyright © centeractive ag

Item Description

 Load from Database Opens a dialog that lets you load data using an SQL query on a database
of your choice. Please limit the number of rows by carefully editing the
SQL query.

Any previous loaded data will be removed and the table structure will
correspond to the data retrieved from the database.

Be aware that the loaded data will have to be stored into a file.

 Load from CSV File This button is used if you want to load data contained in a CSV file.
When pressing the button, the user is prompted to choose the CSV
source file and then he’ll see the following dialog where he can specify
how the file content should be processed.

Any previous loaded data will be removed and the table structure will
correspond to the data retrieved from the CSV file.

Be aware that the loaded data will have to be stored into a file other
than the CSV source file.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 46 of 156

4. MESSAGING

4.1. MESSAGING PROGRAM NODES

Certain tree nodes acting like independent programs are used to send and/or receive messages using

different types of protocols such as Tibco Rendezvous®, JMS or HTTP (SOAP). The detail view of such

messaging program tree nodes is a tabbed pane that holds the “Console” tab where all program

activities are shown in textual mode. The console view is the basic detail view that is also available on

other (none messaging) executable nodes. The additional “Messages” tab shows all inbound and

outbound messages from messaging program components in an easy readable way.

Inbound message are shown by a left directed arrow while outbound message are represented

by a right directed arrow . Messages that are dependent on a previous message have their arrow

shifted to the right. This is shown in the figure below that belongs to a Rendezvous Subscriber node.

Each time the component received an inbound message on the subject “test.subject”, it replied on

the subject “test.reply.subject” and sent another two messages on the subjects

“test.forward.subject.abc” and “test.forward.xyz” each.

The maximum number of messages retained in the “Messages” tab is 100 by default. Each time a

newly added message exceeds this number, the oldest message does get removed from the table

automatically. The limitation of 100 messages can be adapted for every single messaging program

node in its property dialog in the field “Message Table Size” that appears in the “Message Retention”

box.

 User Manual . Opensphere Release 2.5

Page 47 of 156 copyright © centeractive ag

4.2. MESSAGE EDITORS

Tibco Rendezvous®, JMS and Web Service messages within Opensphere can be shown and edited

using the standalone message list editor or the multi message document. Some program nodes such

as the “RV Publisher” or “JMS Message Consumer” let you edit messages directly within their

property dialog.

4.2.1. MESSAGE LIST EDITOR

The message list editor gets invoked through the menu item Message > Message Editor… or by

pressing the toolbar button showing the icon . The editor is basically divided into two parts, the

message list appearing on its top and the message view that on its bottom that shows the details of

the message currently selected in the list. The message view shows the message structure as a tree

and lets you select single nodes. The message dependent details of the selected tree node get

displayed right to the tree. Some tree nodes contain read only information some others are editable.

Some data may be edited directly within the message list (table) or within the message structure tree;

this is dependent on the message type however.

When working with the message list editor, you start creating new messages by activating the “Add”

button or you load one or several messages from a file (“Open File” button). Messages

contained in files have an application specific XML format. Opensphere however first deducts the

message type from the file extension. Therefore it is important not to change the extension of

message files. Current known message types and their corresponding file extensions are listed below.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 48 of 156

Message Type File Extension

JMS Message jms

Tibco Rendezvous® Message rvm

Web Service Message (can contain wso and wsr) wsm

When loading messages from a file, the editor detects the message type from the file extension.

When creating a new message from scratch within a dialog that does

not contain any message yet, you have first to select the message

type from the dialog shown beside. The message types appearing

within the dialog depend on the modules currently activated

(installed) in Opensphere.

The message list editor can only contain messages of one type at the

same time.

The message list editor contains a menu and a tool bar that contain generic items valid for all message

types but also specific items that are shown only when editing a certain message type. The generic

items appearing in the menu and/or on the tool bar are listed in the following table:

Button Description

 Open File Opens a file that contains the definition of one or several messages in
the Opensphere specific XML format. When a new message file is loaded
into the editor that shows already one or several messages, those
messages are not simply replaced by the new ones. Instead the user is
asked how he wants the new messages to be loaded. He can choose
between the following options:

 Replace current messages
 Append to the end of the message table
 Insert at the beginning of the message table
 Insert after the selected message
 Insert before the selected message

Be aware that in case you press the save button or the corresponding
menu item, all messages are saved to the file from where the latest
messages were loaded.

 Save Saves the message contained in the message editor to its original file. If
the message was not initially loaded from a file, this will save it to a new
file using the appropriate file extension. The file name and its location
can be altered by the user.

 Save As Saves the message contained in the message editor to a file other then
its original one. The name and its location can be chosen by the user.

 Switches to the mapping view and back to the normal view. This button
is available on embedded message editors for specific components only.

 Add Message Adds a new empty message to the multiple message editor

 Duplicate Message Duplicates the selected message from the message

 Remove Removes the selected message from the message

 User Manual . Opensphere Release 2.5

Page 49 of 156 copyright © centeractive ag

Button Description

 Show Comparison
Rules

Switches the message list editor to the comparison rule mode

 First Navigates to the first message in the message table

 Prior Navigates to the previous message in the message table

 Next Navigates to the next message in the message table

 Last Navigates to the last message in the message table

 Find Opens the search dialog shown below and lets the user define and
perform a search for data present inside the message contained in the
message editor.

 Find Again Performs the defined search again starting at the current position

To move single rows within the message table to a new position or to remove

them from there, right click the corresponding row-header and select one of the

menu items contained in the pop-up menu. The same menu items are also

available in the Edit menu.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 50 of 156

4.2.2. MULTI MESSAGE DOCUMENT EDITOR

The multi message document editor gets invoked through the menu item Message > Multi Message

Doc Editor…. It contains a number of message list editors that are added dynamically. Each internal

message list editor may contain messages of the same or of a different type depending on the user’s

choice.

The multi message document editor lets you arrange the contained message list editors in several

ways. Either you prefer them appearing within a tabbed pane or you may want to see them as

internal frames that can be tiled according to your choice.

Most items of the menu and the tool bar appearing on the multi message document editor act on the

current selected internal message list editor and have the same functionality as on the standalone

message list editor.

Item Description

 New Adds a new internal message list editor

 Show Comparison Option Shows a dialog where the user may define a few options that are
considered when comparing messages. This item gets activated only
if the editor contains exactly two internal message list editor and if
one of them is in view mode “Show Comparison Rules”.

 User Manual . Opensphere Release 2.5

Page 51 of 156 copyright © centeractive ag

Item Description

 Start Comparison Starts comparing the messages currently contained in the two
internal message list editors.
This item gets activated only if the editor contains exactly two
internal message list editor and if one of them is in view mode
“Show Comparison Rules”.

 Toggle Work Tab Shows or hides the work tabs that appear on the bottom of the
editor.

Configure XML Nodes Shows a dialog where the user can define the appearance of XML
nodes (see. Customizing)

4.2.3. MESSAGE COMPARISON

The multi message document editor can be used for comparing messages. To do so, it must contain

two message list editors, one that holds the reference messages and one that holds the messages to

be checked.

4.2.4. COMPARISON RULE EDITING

Comparison rules on messages can be defined within a message list editor if its current view mode is

“Show Comparison Rules” (see menu item View > Show Comparison Rules). If you switch to this node,

the comparison rule panel appears at the bottom of the message list editor and comparison sensitive

nodes are shown together with a disabled compare icon . Message comparison rule editing is

done in a similar as for XML documents; the main difference is the way how paths appear in the

comparison rule table. Whereas XML comparison rule definition uses XPath only notation, message

comparison rule also uses a more readable unix like tree path notation.

4.2.4.1. TREE NODE RULES

A new message comparison rule is added through a click on the disabled icon located left to the tree

node. The icon gets then enabled and a row is added to the table within the comparison rule

panel. If you click on the enabled icon again, the message rules get removed from the table. The

sequence of the comparison rules within the table can be altered through the “up” and “down”

buttons. When comparison is done, the comparison rules are processed in the same sequence as they

are present in the table, the top most gets processed first.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 52 of 156

Comparison rules define what value certain elements from an actual messag should contain to be

considered correct values. To be able to successfully locate XML nodes, they must be uniquely

identified by an XPath expression that is either generated by the editor or edited by the user. Each

comparison rule by default contains two XPath expressions, one for identifying the node to be

checked (actual value), the other one for identifying the node that holds the expected value (located

in the reference message). The expected value may alternatively be specified by a literal instead of an

XPath expression.

When creating a new comparison rule, its default function is “equals”. Another rule specific function

can be chosen from the combo box that appears in the function table cell. When comparison is done,

the selected function generates a default error text in case the expected value in not correct.

The table below explains each item of a comparison rule in detail.

Comparison
Rule Attribute

Description

Value Path This attribute specifies the actual value from the message that has to be checked.
It must be a valid XPath expression.
Instead of showing the XPath expression, the comparison rule table shows a unix
like notation that identifies the message node the comparison references. If you
start editing the cell by clicking inside the cell, you will actually see the previously
hidden XPath expression and you can adapt it to your needs. As an example the
below located path editor shows the XPath expression for a Tibco Rendezvous®
message node identified by the tree path “/Person/Address/ZIP Code”

 User Manual . Opensphere Release 2.5

Page 53 of 156 copyright © centeractive ag

Comparison
Rule Attribute

Description

Function This attribute specifies the function that must be applied either on the actual value
only (i.e. “is empty”) or between the actual value and the expected value (i.e. “is
greater then”). Available functions are the following ones:

equal to The actual value must be the same as the expected value

not equal to The actual value must be different from the expected value

less then The actual value must be lexographically smaller then the
expected value. The comparison is based on the Unicode
value of each character in the strings.

greater then The actual value must be lexographically greater then the
expected value. The comparison is based on the Unicode
value of each character in the strings.

less or equal to The actual value must be lexographically smaller then or
equal to the expected value. The comparison is based on
the Unicode value of each character in the strings.

greater or equal to The actual value must be lexographically greater then or
equal to the expected value. The comparison is based on
the Unicode value of each character in the strings.

empty The actual value must be empty

not empty The actual value must not be empty

length The length of the actual value must the one specified by the
expected value. The expected value must be a valid integer
value.

contains The actual value must contain the expected value as a
substring

is contained in The actual value must be contained in the expected value
as a substring

starts with The actual value must start with the expected value

ends with The actual value must end with the expected value

Expected Value The expected value is also known as the reference value. It is usually a predefined
value that is specified either by an XPath expression or by a litter value. The
expected value is interpreted as literal in case it is enclosed by quotation marks
(“”), otherwise it is always considered to be an XPath expression.
Instead of showing an XPath expression, the comparison rule table shows a unix
like notation that identifies the message node the comparison references. If you
start editing the path by clicking inside the cell, you will actually see the previously
hidden XPath expression and you can adapt it to your needs (see also “Value
Path”).

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 54 of 156

Comparison
Rule Attribute

Description

User Message The optional “User Message” gets added to the function message and lets you
produce some customized output.

Nested XML This check box indicates whether the referenced message structure node contains
itself XML data. If the check box is selected, you are enabled to define comparison
rules on the nested XML structure as well.

4.2.4.2. NODE DETAIL RULES

For some type of messages, more specific comparison rules can be defined inside the message node

detail view. The compare icon and the way it gets activated is the same described for tree nodes.

4.2.4.3. NESTED XML CONTENT RULES

Some message nodes can contain XML formatted content. Opensphere lets you define comparison

rules for single XML element within such custom defined message payload. Go through the following

steps to create comparison rules for nested XML content.

1. First define a comparison rule for the message node that contains the XML payload

2. Select the “Nested XML” check box within the comparison rule table

3. Define any XML element you want to add a comparison rule for

 User Manual . Opensphere Release 2.5

Page 55 of 156 copyright © centeractive ag

4.2.5. COMPARISON PROCESS

As soon as the multi message document editor contains exactly two message list editors and if one of

them is in view mode “Show Comparison Rules”, the “Start Comparison” button gets enabled.

4.2.5.1. COMPARISON OPTIONS

When the message comparison can be started, the “Show Comparison Options” button is also

enabled. The comparison options dialog lets you define the way how comparison should be done and

how detailed information you like to get printed to the work panel.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 56 of 156

Option Description

Comparison Mode The comparison mode can be selected from the combo box.

Compare all for equality
All message fields of the compared messages must be identical with the
message fields of the reference message. This applies to the field names, the
field ID’s, the values and the message structure.
“Compare all for equality” is selected by default. Therefore if you define
comparison rules and you don’t get the expected result, please check first the
selected comparison mode.

Compare equality not structure
All fields of the compared message must be equal to that of the reference
message. Fields that are in the compared message but not in the reference
message are ignored.

Compare defined only
Only message fields explicitly defined for comparison are considered. A
message field is defined when the check box “Check” on its node detail view is
selected. The message structure beside the defined fields is not considered.

Compare all but defined (inverse comparison)
Compares all message nodes except those a comparison rule is defined for

Verbose The comparison process by default only reports detail results in case single
comparisons fail. To get more detailed output, select this check box.

Excluded Paths Comma separated list of XPath expressions that identify elements (paths) that
must entirely be excluded when comparison is done. Comparison is done on
the XML representation of individual messages. Therefore for being able to
define valid XPath expressions, one has to know about the XML representation
of messages. Useful expressions for Tibco Rendezvous® messages for example
would be “//rvMsgFieldGroup[@name='^prefixList^']” or
“//rvMsgFieldGroup[@name='^tracking^']”. Excluded paths are considered only
for comparison mode “Compare all for equality”.

 User Manual . Opensphere Release 2.5

Page 57 of 156 copyright © centeractive ag

4.2.5.2. RUNNING THE COMPARISON

If the “Start Comparison” button gets pressed, a new work panel gets added to the bottom of the

frame, it will show the result as comparison goes on. The two internal message list editors get

arranged side by side, the one that contains the reference messages (comparison rules) gets placed to

the left.

4.2.5.3. COMPARISON RESULT

The detailed result of the message comparison is shown in a new message pane at the bottom of the

comparison dialog. The message pane by default shows some information about the comparison and

a row for each failed comparison within a table. Single rows are shown as structured text in a

dedicated dialog when a mouse click occurs on them. The entire message result panel can also be

shown as plain structured text by right clicking inside the table and choosing View > Text Pane from

the popup menu.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 58 of 156

The following figure shows an example of a comparison result in the text pane view. The comparison

was done in verbose mode (see property dialog).

start comparing messages (compare all for equality)
 excluded tree paths are: /^prefixList^, /^tracking^
 excluded XPath's are: /msg/msgField[@name='^prefixList^'], /msg/msgField[@name='^tracking^']
 1 message will be compared to 1 reference message
 message number 1 is not correct

 /msg/text is excluded from comparison

 /msg/Person/text is excluded from comparison
 /msg/Person/Title/text is fine
 /msg/Person/Name/text is fine
 /msg/Person/Firstname/text is fine

 /msg/Person/Birthdate/text is fine
 /msg/Person/Address/text is excluded from comparison
 /msg/Person/Address/Street/text is fine
 /msg/Person/Address/Housenumber/text is fine
 /msg/Person/Address/ZIP Code/text is fine
 /msg/Person/Address/Location/text is fine
 /msg/Person/Address/State/text is fine
 /msg/Person/Address/Country/text is fine
 /msg/Person/Job History/text is excluded from comparison
 /msg/Person/Job History/Job/text is excluded from comparison
 /msg/Person/Job History/Job/Desc/text is fine
 /msg/Person/Job History/Job/Company/text is fine
 /msg/Person/Job History/Job/Hire Date/text is fine
 /msg/Person/Job History/Job/text is excluded from comparison
 /msg/Person/Job History/Job/Desc/text
 expected <Consultant> but was <Senior Consultant>
 /msg/Person/Job History/Job/Company/text
 expected <centeractive ag> but was <IBM>
 /msg/Person/Job History/Job/Hire Date/text
 expected <01.01.1999 00:00:00> but was <01.04.2000 00:00:00>
 /msg/Person/Job History/Job/text is excluded from comparison
 /msg/Person/Job History/Job/Desc/text
 expected <Business Analist> but was <Senior Consultant>
 /msg/Person/Job History/Job/Company/text
 expected <Microsoft> but was <IBM>
 /msg/Person/Job History/Job/Hire Date/text
 expected <01.07.1998 00:00:00> but was <01.04.2000 00:00:00>
 /msg/Person/Job History/Job/text is excluded from comparison
 /msg/Person/Job History/Job/Desc/text
 expected <Programmer> but was <Senior Consultant>
 /msg/Person/Job History/Job/Company/text
 expected <Microsoft> but was <IBM>
 /msg/Person/Job History/Job/Hire Date/text
 expected <01.02.1994 00:00:00> but was <01.04.2000 00:00:00>

 1 incorrect message found totally

 User Manual . Opensphere Release 2.5

Page 59 of 156 copyright © centeractive ag

Below you can see the result of a non-verbose sample comparison where a message field contains

nested XML content.

start comparing messages (compare defined only)

 excluded tree paths are: /^prefixList^, /^tracking^

 1 message will be compared to 1 reference message

 message number 1 is not correct

 /msg/Document/XMLData (nested XML content...)

 .../person/name[1]/text()

 expected <Müller> but was <Muller>

 .../person/address[1]/street[1]/text()

 expected <Rua Goñzalez> but was <Rua Gonzalez>

 1 incorrect message found totally

4.3. SOAP WEB SERVICES

Opensphere lets you define SOAP web service clients and server simulators based on existing WSDL

files through a few mouse clicks. SOAP is an XML-based protocol for exchanging information between

computers.

4.3.1. WSDL FILE CACHE

The Web Services Description Language (WSDL) is an XML-based language that is used for describing

the functionality offered by a web service. A WSDL description of a web service - usually contained in

a WSDL file - provides a machine-readable description of how the service can be called, what

parameters it expects, and what data structures it returns. WSDL files constitute a contract between

clients and servers.

The WSDL files used to generate web service clients or server stubs are stored within the gen/wsdl

folder of the Opensphere project directory they belong to. When a new project is created, this folder

is empty but as soon as you invoke any SOAP web service related function, Opensphere asks you to

select a local or a remote WSDL file. The selected WSDL file is then parsed and added to the WSDL file

cache for subsequent user selections. The WSDL file is also stored within the gen/wsdl folder together

with included WSDL files or reference schema files (XSDs). Every time an Opensphere project is

opened, its gen/wsdl folder is scanned and the WSDL files are loaded to the WSDL file cache.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 60 of 156

Whenever Opensphere needs a WSDL file to accomplish a

web service related task, the program requests it from the

user through the dialog shown beside. The dialog lists all

entries from the project WSDL file cache. When no WSDL file

was used for this project yet, the WSDL file cache is empty.

If no WSDL files are shown in the dialog or if the desired one is

not listed yet, you can import a new one to the WSDL file

cache by pressing the appropriate button from the top

located tool bar. Their respective functionality is explained in

the table below.

The WSDL file cache can also be viewed and altered on the project properties dialog that gets

displayed if you select Project > Project Properties… from the main menu.

 Icon Description

Add WSDL File This function lets you select a WSDL file from the file system.

Add Remote WSDL This function lets you select a remote WSDL file by entering an HTTP URL
in a pop-up dialog. Such an URL could look as follows:

http://www.mycompany.com:8080/store/ArticleService?wsdl

Delete WSDL Deletes the selected WSDL definition from the cache

4.3.2. WEB SERVICE MESSAGE EDITOR

Web service components within Opensphere use XML formatted messages (file extension wsm) to

define what data to exchange and how to address the counterpart. Such messages can be operation

invocations or the result to such invocation. Operation invocation messages are requests that are

sent to a web service server. Operation result messages let you define the data a web service server

component shall send back as a response to a corresponding operation invocation.

You’ll always need a WSDL file that describes the location of the service and the operations the

service exposes. Operation invocations are typically defined for the web service client; results are

defined on the server component for one or several service operations. In some cases, those

messages are defined independently from a client or a server. This can be done through the

standalone message list editor (menu item Message > Message Editor…) and through the multi

message document editor (menu item Message > Multi Message Doc Editor…).

 User Manual . Opensphere Release 2.5

Page 61 of 156 copyright © centeractive ag

The following figure shows an operation invocation result that’s being edited inside a standalone

message list editor. The message is displayed using the “Show Comparison Rules” mode and can be

saved to an XML file in order to be used as a reference message in a comparing component.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 62 of 156

4.3.3. WEB SERVICE SERVER (SOAP OVER HTTP)

 This program simulates a HTTP server that hosts a number of web services with user-defined

responses to specific operation invocations. When the server node gets created, its property dialog

lets you define a few options related to the server as a whole. The most significant option is the HTTP

port on which the server listens on incoming web service operation invocations.

 User Manual . Opensphere Release 2.5

Page 63 of 156 copyright © centeractive ag

Web Service Server options are defined on the first tab within the properties dialog, a detailed

description is explained in the following table.

Option Description

Name The name that appears in the project tree together with the node
representing the web service server

Protocol Choose HTTP or HTTPS

Port HTTP or HTTPS port on which the server listens on incoming web service
operation invocations

Terminate after… The selected check box together with the number in the behind located text
field tells the server to stop after the specified number of operation
invocations have been accepted and processed.

In case the trailing check box “Exceeding generates error” is selected, the
server however does not stop immediately when the specified number of
operation invocations has occurred. It only stops when an additional
operation invocation is detected or if the idle timeout is reached. An
additional operation invocation in this case generates an error.

In order to get a server checking that no operation invocations is made on a
certain web service for example; you would have to specify 0 operation
invocation(s) and to select the check box “Exceeding generates error”. As soon
as it detects an operation invocation, it would then generate an error.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 64 of 156

Option Description

Abort after… The selected check box together with the specified number of seconds
indicates that the process has to stop after the specified time of inactivity.
The time of inactivity is the time elapsed since the last operation invocation
has been processed.

The trailing check box “Generates error” indicates if an error must be
generated in case the defined idle time is exceeded without having detected
any operation invocation.

SSL Client Certificate Defines an X.509 client certificate to run the web service endpoint over a
secure socket layer. A certificate (also known as a public-key certificate) is a
digitally signed statement from one entity (person, company, etc.), saying
that the public key (and some other information) of another entity has some
specific value. When data is digitally signed, the signature can be verified to
check the data integrity and authenticity.

You can run several web-service servers with different keystores – just bear in
mind that if you specify a keystore that contains multiple X.509 certificates,
Opensphere randomly uses one of them.

Use Cached Keystore If this checkbox is selected, you must choose a keystore from the project
specific cache. Prior to be able to use cached keystore, they must be defined

in the dialog that pops up when you activate the button.

If this checkbox is not selected, the button lets you choose an existing
keystore from the file system. This file is referenced externally and is never
copied to the project directory.

Keystore Password The password used to access the keystore

Message Table Size The maximum number of messages that are contained in the message table.
This table appears on the “Messages” tab from the tree node detail view.

Write operation
invocations to file

Select this check box if you want the server to write inbound messages to a
file specified in the below located text field

Deploy services each
time the server gets
started

Select this check box to make sure the server simulator runs always with the
latest definition of the web service implementation. If this check box is not
selected, you have to manually deploy new and changed web service
implementations through the server node popup menu.

Once you have defined the server options, you have to define the operation response messages. This

is done on the second tab within the server property dialog. Either you import an existing definition

by opening an XML file (file extension wsm) or you press the button that lets you select a WSDL

definition from the project specific WSDL file cache and then choose available operation responses

from the dialog shown below. The dialog lets you also select a set of self-explanatory options that

determine how the program initially generates the SOAP content of the response messages. If you

want to choose operation responses from a different WSDL file, simply click the button labeled

“Switch WSDL…” and make your choice.

 User Manual . Opensphere Release 2.5

Page 65 of 156 copyright © centeractive ag

Within the Web Service properties dialog every defined operation response message is represented

by a row on the top located table while its details are shown in the bottom part of the dialog when a

row is selected. All you got left to do is editing the result data within the SOAP Content node. The

payload (SOAP Content) of the operation response can contain markers that are replaced by the value

of project dependent substitution variables.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 66 of 156

4.3.4. WEB SERVICE CLIENT (SOAP OVER HTTP)

 The Web Service Client is able to invoke the web service operations with different data (SOAP

Content) each. This component uses SOAP over HTTP – or HTTPS - to communicate with the remote

service. When a new client is created, you are asked to select a WSDL file from the WSDL file cache.

The Opensphere program will try to extracts the location and port of the target service from the

initially selected WSDL file. The property dialog of the Web Service Client lets you extensively

customize its behavior within the first tab.

In order to complete the configuration, you have to add (define) at least one operation invocation on

the tab labeled “Operation Invocations”. This is done by opening an XML file (file extension wsm) or

by by activating the button. Latter lets you select a WSDL definition from the project specific

WSDL file cache and then choose available operation invocations from the dialog shown below. The

dialog lets you also select a set of self-explanatory options that determine how the program initially

generates the SOAP content of the operation invocation messages. If you want to choose operation

invocations from a different WSDL file, simply click the button labeled “Switch WSDL…” and make

your choice.

The payload (SOAP Content) of the operations to be invoked can contain markers that are replaced by

the value of project dependent substitution variables. Markers can also be replaced by the

corresponding data of a single row when the driving component for invoking operations is a row set.

Row sets can be defined as static data within an editor but they can also be the result of an SQL select

statement that gets executed each time the Web Service Client is started.

 User Manual . Opensphere Release 2.5

Page 67 of 156 copyright © centeractive ag

Web Service Client options are defined on the first tab within the dialog, the detailed description is

explained in the following table.

Option Description

Name The name that appears in the project tree together with the node
representing the web service client

Protocol HTTP or HTTPS

Host The name or the IP address of the target computer that hosts the web
service(s) to be invoked

Port The port number the target computer listens for incoming web service
operation invocations

Use HTTP Proxy... Select this check box and enter appropriate values for “Proxy Host” and
“Proxy Port” if you communicate through an HTTP proxy.

Use Proxy Basic
Authentication…

Select this check box and enter “Username” and “Password” next to it if the
HTTP proxy needs basic authentication.

Connect Timeout Maximum number of milliseconds the client tries to establish a HTTP
connection to the server.

Response Timeout Maximum number of milliseconds the client waits for receiving operation
invocation responses.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 68 of 156

Option Description

Op. Invocation
Trigger

Determines how the operation invocation process shall be triggered.
According to the selection, some controls in this box get visible, some others
non visible.

Number of Iterations Number of iterations the client should send operations invocations each time
it is started. This number has no effect if the client was told to invoke
operations forever.
Accomplishing sending all operation invocations of the defined message array
is considered to be one iteration.

This field is visible only if the operation invocation trigger selection is “Iterator
Counter (Counter)”.

Infinite Indicates if operations invocations should be sent until the process is stopped
by external intervention. If this check box is unchecked, “Number of
Iterations” setting determines how many operations invocations are sent.

This field is visible only if the operation invocation trigger selection is “Iterator
Counter (Counter)”.

Row Set This line shows what kind of data row set is used to control the message
sending process. Row sets are tabular data that can be defined in a separate
dialog by pressing the “Define…” button. In that dialog, you can either define
an SQL query on a database of your choice or you can define your own static
table data that will be stored to an XML file. If you define a row set based on
an SQL select statement, the statement gets executed every time the Web
Service Client is started.

When you decide to define static data, Opensphere lets you do that from
scratch but it also offers the possibility to import the data from a database. In
both cases, you can alter the data immediately or at any time later to make it
fit your needs. When after defining a new static row set you close the Row Set
Editor by pressing the “OK” button, Opensphere may ask you to save the row
set data to an XML file of your choice. Opensphere can also be told to decide
by its own where to store the XML file. This can be achieved by selecting the
option “Automatically define name and location of messaging component
files” on the File panel within the tool options dialog (select Tool > Tool
Options… from the main menu). When this option is selected and the static
row set data was never saved to a file, you will see “File: not yet defined”
right to the “Define…” button. That’s there because Opensphere will not
automatically assign a file name and save the data to it until the property
dialog gets closed through the “OK” button.

Please consult the chapter “3.5 Row Set Editor” for detailed information
about the row set editor.

When running the Web Service Client, the rows from the row set (regardless
if resulting from an SQL query or from static data) are traversed one by one
until the last row is reached. Every row corresponding to one iteration, will
trigger the invocation of all operations present in the operation list. The
values from the current row can be used as string type substitution values in
the operation data of that one iteration. To make the substitution happen,
you simply place the column name, enclosed by the appropriate pre- and
postfix wherever you wish within your operation, same as you do with
ordinary substitution values (see 2.3 Substitution Variables).

 User Manual . Opensphere Release 2.5

Page 69 of 156 copyright © centeractive ag

Option Description

This field is visible only if the operation invocation trigger selection is “Data
Row Set”.

Interval Sets the time in milliseconds the client should wait between operations
invocations. If the operations being invoked send a result back, then the
publisher waits the time specified after having received that result.

Use HTTP Basic
Authentication

Indicates whether the web service operation invocation uses HTTP basic
authentication

Username Username to be used for authentication. This value is used only in case the
“Use Authentication” checkbox is selected.

Password User password to be used for authentication. This value is used only in case
the “Use Authentication” checkbox is selected.

SSL Client Certificate Defines an X.509 client certificate(s) to whom the client should trust while
connecting to the web service endpoint over a secure socket layer. A
certificate (also known as a public-key certificate) is a digitally signed
statement from one entity (person, company, etc.), saying that the public key
(and some other information) of another entity has some specific value.
When data is digitally signed, the signature can be verified to check the data
integrity and authenticity.

Use Cached
Truststore

If this checkbox is selected, you must choose a truststore from the project
specific cache. Prior to be able to use cached truststore, they must be defined

in the dialog that pops up when you activate the button.

If this checkbox is not selected, the button lets you choose an existing
truststore from the file system. This file is referenced externally and is never
copied to the project directory.

Truststore Password The password used to access the truststore

Message Table Size The maximum number of messages that are contained in the message table.
This table appears on the “Messages” tab from the tree node detail view.

Write operation
responses to file

Select this check box if you want the client to write result messages
(responses) to a file specified in the below located text field

4.3.5. WEB SERVICE CLIENT (SOAP OVER JMS)

 This Web Service Client uses SOAP over JMS for the communication with the remote web service.

When a new client is created, you are asked to select a WSDL file from the WSDL file cache. The

Opensphere program will try to extracts the location and port of the target service from the initially

selected WSDL file. The property dialog of the Web Service Client lets you extensively customize its

behavior within the first tab.

In order to complete the configuration, you have to add (define) at least one operation invocation on

the tab labeled “Operation Invocations”. This is cone by opening an XML file (file extension wsm) or

by by activating the button. Latter lets you select a WSDL definition from the project specific

WSDL file cache and then choose available operation invocations from the dialog shown below. The

dialog lets you also select a set of self-explanatory options that determine how the program initially

generates the SOAP content of the operation invocation messages. If you want to choose operation

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 70 of 156

invocations from a different WSDL file, simply click the button labeled “Switch WSDL…” and make

your choice.

The payload of the operations to be invoked can contain markers that are replaced by the value of

project dependent substitution variables. Markers can also be replaced by the corresponding data of

a single row when the driving component for invoking operations is a row set. Row sets can be

defined as static data within an editor but they can also be the result of an SQL select statement that

gets executed each time the Web Service Client gets started.

 User Manual . Opensphere Release 2.5

Page 71 of 156 copyright © centeractive ag

Web Service Client options are defined on the first tab within the dialog, the detailed description is

explained in the following table

Option Description

Name The name that appears in the project tree together with the node
representing the web service client

serverURL The URL of the JMS server (i.e. tcp://localhost:7222)

userName The user name in case an identification is required

userPassword The password in case an identification is required

Destination Type Lets you choose between the destination type “Queue” or “Topic”

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 72 of 156

Option Description

Destination The name of the destination (either a topic or a queue).
Opensphere lets you discover destinations through the search button
located right to the destination field. This is a feature that requires a JMS
connection with administrator privileges. If you have such a user, temporary
specify the corresponding connection, discover and select your destination.
Don’t forget to specify a non-administrator connection for further use.

To know about valid destinations for Tibco EMS™ for example, you may also
open the EMS Administration Tool and connect to the JMS provider
specified by hostname and port. You could for example type connect
"tcp://localhost:7222 ". Once the connection is established, enter
the command "show queues" or "show topics" and you get a list
of available destinations.

Message Body Type This combo box lets you choose between Bytes and Text messages

Timeout Operation invocation timeout in milliseconds

Op. Invocation Trigger Determines how the operation invocation process shall be triggered.
According to the selection, some controls in this box get visible, some others
non visible.

Number of Iterations Number of iterations the client should send operations invocations each
time it is started. This number has no effect if the client was told to invoke
operations forever.
Accomplishing sending all operation invocations of the defined message
array is considered to be one iteration.

This field is visible only if the message sending trigger selection “Iterator
Counter (Counter)”.

Infinite Indicates if operations invocations should be sent until the process is
stopped by external intervention. If this check box is unchecked, “Number
of Iterations” setting determines how many operations invocations are sent.

This field is visible only if the message sending trigger selection “Iterator
Counter (Counter)”.

 User Manual . Opensphere Release 2.5

Page 73 of 156 copyright © centeractive ag

Option Description

Row Set This line shows what kind of data row set is used to control the message
sending process. Row sets are tabular data that can be defined in a separate
dialog by pressing the “Define…” button. In that dialog, you can either
define an SQL query on a database of your choice or you can define your
own static table data that will be stored to an XML file. If you define a row
set based on an SQL select statement, the statement gets executed every
time the Web Service Client is started.

When you decide to define static data, Opensphere lets you do that from
scratch but it also offers the possibility to import the data from a database.
In both cases, you can alter the data immediately or at any time later to
make it fit your needs. When after defining a new static row set you close
the Row Set Editor by pressing the “OK” button, Opensphere may ask you to
save the row set data to an XML file of your choice. Opensphere can also be
told to decide by its own where to store the XML file. This can be achieved
by selecting the option “Automatically define name and location of
messaging component files” on the File panel within the tool options dialog
(select Tool > Tool Options… from the main menu). When this option is
selected and the static row set data was never saved to a file, you will see
“File: not yet defined” right to the “Define…” button. That’s there because
Opensphere will not automatically assign a file name and save the data to it
until the property dialog gets closed through the “OK” button.

Please consult the chapter “3.5 Row Set Editor” for detailed information
about the row set editor.

When running the Web Service Client, the rows from the row set (regardless
if resulting from an SQL query or from static data) are traversed one by one
until the last row is reached. Every row, corresponding to one iteration, will
trigger the invocation of all operations present in the operation list. The
values from the current row can be used as string type substitution values in
the operation data of that one iteration. To make the substitution happen,
you simply place the column name, enclosed by the appropriate pre- and
postfix wherever you wish within your operation, same as you do with
ordinary substitution values (see 2.3 Substitution Variables).

This field is visible only if the operation invocation trigger selection is “Data
Row Set”.

Interval Sets the time in milliseconds the client should wait between operations
invocations. If the operations being invoked send a result back, then the
publisher waits the time specified after having received that result.

Message Table Size The maximum number of messages that are contained in the message table.
This table appears on the “Messages” tab from the tree node detail view.

Write operation
responses to file

Select this check box if you want the client to write result messages
(responses) to a file specified in the below located text field

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 74 of 156

4.4. JMS

4.4.1. JMS MESSAGE EDITOR

JMS messages within Opensphere can be shown and edited using the standalone message list editor

(menu item Message > Message Editor…) and through the multi message document editor (menu

item Message > Multi Message Doc Editor…). JMS specific program nodes such as the “JMS Message

Producer” also let you edit JMS messages directly within their property dialog.

When adding a new message to the message list editor, a

dialog pops up where you have to select the type of JMS

message you want to add. The JMS message type cannot be

changed on an existing message but the message list editor can

contain messages of different JMS type at the same time.

A Message (without body) does not contain a body at all and

could be used for some kind of advisory.

A Bytes message object is used to send a message containing a stream of non-interpreted bytes.

A Map message object is used to send a set of name-value pairs.

An Object message object is used to send a message that contains a serializable object in the Java

programming language (“Java object”).

A Stream message object is used to send a stream of primitive types in the Java programming

language.

A Text message object is used to send a message containing plain text. This message type may also

contain XML formatted content.

4.4.1.1. JMS MESSAGE HEADER AND PROPERTIES

The JMS message header contains a number of standard properties. Few of them are editable within

the message editor while the other can only be set by the message producer itself. To see the

properties, you have to select to message root node within the structure tree. As you may notice in

the figure below, you can also define custom properties in the table that appears at the bottom of the

node detail view.

 User Manual . Opensphere Release 2.5

Page 75 of 156 copyright © centeractive ag

The JMS header fields are explained in the table that follows:

Header Fields Description

Delivery Mode Client marks a message as persistent if it feels that the application will have
problems if the message is lost in transit. A client marks a message as non-
persistent if an occasional lost message is tolerable. Clients use delivery mode
to tell a JMS provider how to balance message transport reliability with
throughput. Delivery mode covers only the transport of the message to its
destination. Retention of a message at the destination until its receipt is
acknowledged is not guaranteed by a PERSISTENT delivery mode. Clients
should assume that message retention policies are set administratively.
Message retention policy governs the reliability of message delivery from
destination to message consumer. For example, if a client's message storage
space is exhausted, some messages may be dropped in accordance with a site-
specific message retention policy. A message is guaranteed to be delivered
once and only once by a JMS provider if the delivery mode of the message is
PERSISTENT and if the destination has a sufficient message retention policy.

Expiration When a message is sent, the JMSExpiration header field is left unassigned.
After completion of the send or publish method, it holds the expiration time of
the message. This is the sum of the “Message Time-To-Live” value specified in
the properties dialog of the JMS Message Producer and the GMT at the time of
the send or publish. If the time-to-live is specified as zero, the JMSExpiration is
set to zero to indicate that the message does not expire. When a message's
expiration time is reached, a provider should discard it. The JMS API does not
define any form of notification of message expiration. Clients should not
receive messages that have expired; however, the JMS API does not guarantee
that this will not happen.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 76 of 156

Header Fields Description

Priority The JMS API defines ten levels of priority value, with 0 as the lowest priority
and 9 as the highest. In addition, clients should consider priorities 0-4 as
gradations of normal priority and priorities 5-9 as gradations of expedited
priority. The JMS API does not require that a provider strictly implement
priority ordering of messages; however, it should do its best to deliver
expedited messages ahead of normal messages.

Correlation ID A Client can use the JMSCorrelationID header field to link one message with
another. A typical use is to link a response message with its request message.
JMSCorrelationID can hold one of the following: A provider-specific message ID
An application-specific String A provider-native byte[] value. Since each
message sent by a JMS provider is assigned a message ID value, it is convenient
to link messages via message ID. All message ID values must start with the 'ID:'
prefix. In some cases, an application (made up of several clients) needs to use
an application-specific value for linking messages. For instance, an application
may use JMSCorrelationID to hold a value referencing some external
information. Application-specified values must not start with the 'ID:' prefix;
this is reserved for provider-generated message ID values.

Type Some JMS providers use a message repository that contains the definitions of
messages sent by applications. The JMSType header field may reference a
message's definition in the provider's repository. The JMS API does not define a
standard message definition repository, nor does it define a naming policy for
the definitions it contains. Some messaging systems require that a message
type definition for each application message be created and that each message
specify its type. In order to work with such JMS providers, JMS clients should
assign a value to JMSType, whether the application makes use of it or not. This
ensures that the field is properly set for those providers that require it. To
ensure portability, JMS clients should use symbolic values for JMSType that can
be configured at installation time to the values defined in the current
provider's message repository. If string literals are used, they may not be valid
type names for some JMS providers.

Destination The JMSDestination header field contains the destination to which the message
is being sent. When a message is sent, this field is ignored. After completion of
the send or publish method, the field holds the destination specified by the
method. When a message is received, its JMSDestination value must be
equivalent to the value assigned when it was sent.

Message ID The JMSMessageID header field contains a value that uniquely identifies each
message sent by a provider. When a message is sent, JMSMessageID can be
ignored. When the send or publish method returns, it contains a provider-
assigned value. A JMSMessageID is a String value that should function as a
unique key for identifying messages in a historical repository. The exact scope
of uniqueness is provider-defined. It should at least cover all messages for a
specific installation of a provider, where an installation is some connected set
of message routers. All JMSMessageID values must start with the prefix 'ID:'.
Uniqueness of message ID values across different providers is not required.

Timestamp The JMSTimestamp header field contains the time a message was handed off
to a provider to be sent. It is not the time the message was actually
transmitted, because the actual send may occur later due to transactions or
other client-side queueing of messages. When a message is sent,
JMSTimestamp is ignored. When the send or publish method returns, it
contains a time value somewhere in the interval between the call and the
return. The value is set as milli seconds.

 User Manual . Opensphere Release 2.5

Page 77 of 156 copyright © centeractive ag

Header Fields Description

Reply To The JMSReplyTo header field contains the destination where a reply to the
current message should be sent. If it is empty, no reply is expected. The
JMSReplyTo can be defined manually with the limitation that at runtime the
entered value is always considered to be of the same type as the one from
JMSDestination. Therefore if a JMS Consumer tries to reply to a topic message,
the JMSReplyTo will be published as a topic as well. The JMSReplyTo is
automatically overridden if a JMS Publisher uses the communication type
“Request”.

Redelivered Indicates whether this message is being redelivered. If a client receives a
message with the JMSRedelivered field set, it is likely, but not guaranteed, that
this message was delivered earlier but that its receipt was not acknowledged at
that time.

In addition to the header fields, it is possible to define custom properties. The type of properties can

be boolean, byte, short, integer, long, float, double or String. The name of properties must not be null

or empty. By convention:

 if the name of a property begins with JMSX, the property is specified by JMS API (like

JMSXGroupID and JMSXGroupSeq to group messages) and is expected to work with all

provider (JMS API 1.1 defines JMSXUserID, JMSXAppID, JMSXDeliveryCount, JMSXGroupID,

JMSXGroupSeq, JMSXProducerTXID, JMSXConsumerTXID, JMSXRcvTimestamp and

JMSXState. See JMS API documention for more information),

 if the name starts with JMS_vendor_name, the property targets the JMS provider and is

specific to this provider (like the property JMS_TIBCO_COMPRESS which tells Tibco EMS
TM

 to

compress the message)

 if the name does not start with JMS, the property is an application specific property.

Any of these fields can be used in a message selector to select incoming messages.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 78 of 156

4.4.1.2. JMS MESSAGE BODY

The JMS API defines five types of message body: Bytes, Map, Object, Stream and Text. For each body

type, Opensphere offers specific editors.

A Text message can be edited either as plain text without any formatting it may be edited using the

built-in XML editor. To switch between both editors, simply click on the appropriate tab located at the

bottom of the node detail view.

Byte messages are shown and edited within the built-in hexadecimal editor that lets you switch

between different base modes and character encoding.

 User Manual . Opensphere Release 2.5

Page 79 of 156 copyright © centeractive ag

A dynamic table let you edit Map and Stream messages. Single rows are added or removed, moved to

another position or altered as much you want. Depending on the selected data type, values are edited

either directly in the table cell or within a specific editor dialog that pops up when a mouse click

occurs on the cell or on the icon appearing right to it.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 80 of 156

Object messages contain a JavaBeans component. Opensphere uses the java.beans.XMLEncoder for

serializing and java.beans.XMLDecoder for de-serializing such data. The data can be edited either as

plain text or within the built-in XML editor. Only Serializable Java objects can be used.

 User Manual . Opensphere Release 2.5

Page 81 of 156 copyright © centeractive ag

4.4.2. JMS MESSAGE PRODUCER

 The JMS Message Producer allows you to send JMS messages and provides support for both the

point-to-point and the publish/subscribe domains. You can import, modify or create the messages to

be sent, define the number of iterations and the interval to be observed between.

The messages to be published can contain markers that are replaced by the value of project

dependent substitution variables. Markers can also be replaced by the corresponding data of a single

row when the driving component for sending messages is a row set. Row sets can be defined as static

data within an editor but they can also be the result of an SQL select statement that gets executed

each time the JMS Message Producer gets started.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 82 of 156

4.4.2.1. JMS MASSAGE PRODUCER OPTIONS

The dialog below allows you to configure the behavior of the JMS Message Producer.

JMS Message Producer options are defined on the first tab within the dialog according to the

following table.

Option Description

Name The name that appears in the project tree together with the node
representing the Message Producer

serverURL The URL of the JMS server (i.e. tcp://localhost:7222)

userName The user name in case an identification is required

userPassword The password in case an identification is required

Destination Type Lets you choose between the destination type “Queue” or “Topic”

 User Manual . Opensphere Release 2.5

Page 83 of 156 copyright © centeractive ag

Option Description

Destination The name of the destination (either a topic or a queue).
Opensphere lets you discover destinations through the search button
located right to the destination field. This is a feature that requires a JMS
connection with administrator privileges. If you have such a user, temporary
specify the corresponding connection, discover and select your destination.
Don’t forget to specify a non-administrator connection for further use.

As an example if you work with Tibco EMS™ and you want to know about
valid destinations, you may also launch the EMS Administration Tool and
connect to the JMS provider specified by hostname and port. You could for
example type connect “tcp://localhost:7222“. Once the connection

is established, enter the command “show queues“ or “show topics“
and you get a list of available destinations.

Communication Type You can choose between communication type “Send” and “Request”. While
“Send” does not expect any reply message, “Request” expects one on a
temporary destination created on the fly.

Request Timeout The number of seconds the publisher must block until it receives a reply
message when sending messages using the communication type “Request”.

Message Time-To-Live Time in seconds from its dispatch time that a produced message should be
retained by the message system. The message time to live is unlimited if the
entered value is zero.

Message Sending
Trigger

Determines how the message producing process shall be triggered.
According to the selection, some controls in this box get visible, some others
non visible.

Number of iterations Number of iterations the publisher should send messages each time it is
started. This number has no effect, if the publisher was told to send
messages forever.

This field is visible only if the message sending trigger selection is “Iterator
(Counter)”.

Infinite Indicates if messages should be sent (published) until the process is stopped
by external intervention. If this check box is unchecked, “Number of
Iterations” setting determines how many messages are sent.

This field is visible only if the message sending trigger selection is “Iterator
(Counter)”.

Row Set This line shows what kind of data row set is used to control the message
sending process. Row sets are tabular data that can be defined in a separate
dialog by pressing the “Define…” button. In that dialog, you can either define
an SQL query on a database of your choice or you can define your own static
table data that will be stored to an XML file. If you define a row set based on
an SQL select statement, the statement gets executed every time the JMS
Message Producer is started.

When you decide to define static data, Opensphere lets you do that from
scratch but it also offers the possibility to import the data from a database.
In both cases, you can alter the data immediately or at any time later to
make it fit your needs. When after defining a new static row set you close
the Row Set Editor by pressing the “OK” button, Opensphere may ask you to
save the row set data to an XML file of your choice. Opensphere can also be
told to decide by its own where to store the XML file. This can be achieved

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 84 of 156

Option Description

by selecting the option “Automatically define name and location of
messaging component files” on the File panel within the tool options dialog
(select Tool > Tool Options… from the main menu). When this option is
selected and the static row set data was never saved to a file, you will see
“File: not yet defined” right to the “Define…” button. That’s there because
Opensphere will not automatically assign a file name and save the data to it
until the property dialog gets closed through the “OK” button.

Please consult the chapter “3.5 Row Set Editor” for detailed information
about the row set editor.

When running the JMS Message Producer, the rows from the row set
(regardless if resulting from an SQL query or from static data) are traversed
one by one until the last row is reached. Every row, corresponding to one
iteration, will trigger the sending action of all messages present in the
message list. The values from the current row can be used as string type
substitution values in the messages of that one iteration. To make the
substitution happen, you simply place the column name, enclosed by the
appropriate pre- and postfix wherever you wish within your message, same
as you do with ordinary substitution values (see 2.3 Substitution Variables).

This field is visible only if the message sending trigger selection is “Data Row
Set”.

Interval Sets the time in milliseconds the publisher should wait between messages.

Generates error when
no reply…

This checkbox is enabled only if the selected communication type is
“Request”. If the checkbox is selected, Opensphere generates an error
(considers the program run as failed).

Message Table Size The maximum number of messages that are contained in the message table.
This table appears on the “Messages” tab from the tree node detail view.

Write incoming reply
message to file

Select this check box if you want the JMS Message Producer to write
incoming reply messages to a file specified in the below located text field

 User Manual . Opensphere Release 2.5

Page 85 of 156 copyright © centeractive ag

The second tab appearing on the dialog lets you define the message or messages to be produced.

Message header fields are editable only if they appear with white background color. Most other fields

are set by the JMS provider when a message is sent. The JMSExpiration is set by the JMS Message

Producer when a message is sent; its value depends on the “Message Time-To-Live” field that can be

found in the property dialog.

4.4.2.2. ADDITIONAL FEATURES

Except the configurable behavior that is defined in the property dialog, a JMS Message Producer

offers a number of additional features. Like any other executable node or test step, a Message

Producer node can be exported to an XML file through the “export” button located in the main

toolbar or through the corresponding menu item from the specific pop-up menu. It may then be re-

imported to a folder or a test case regardless whether it was exported from an executable node or a

test step.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 86 of 156

4.4.3. JMS MESSAGE CONSUMER

 The JMS Message Consumer allows you to receive JMS messages and provides support for both

the point-to-point and the publish/subscribe domains.

The dialog shown below lets you configure the JMS Message Consumer

JMS Message Consumer options are defined on the first tab within the dialog; their signification is

explained in the following table

Option Description

Name The name that appears in the project tree together with the node
representing the Message Consumer

serverURL The URL of the JMS server (i.e. tcp://localhost:7222)

userName The user name in case an identification is required

userPassword The password in case an identification is required

Destination Type Let’s you choose between the destination type “Queue” or “Topic”

 User Manual . Opensphere Release 2.5

Page 87 of 156 copyright © centeractive ag

Option Description

Destination The name of the destination (either a topic or a queue).
Opensphere lets you discover destinations through the search button located
right to the destination field. This is a feature that requires a JMS connection
with administrator privileges. If you have such a user, temporary specify the
corresponding connection, discover and select your destination. Don’t forget
to specify a non-administrator connection for further use.

To know about valid destinations for Tibco EMS™ for example, you may also
open the EMS Administration Tool and connect to the JMS provider specified
by hostname and port. You could for example type connect
“tcp://localhost:7222“. Once the connection is established, enter the

command “show queues“ or “show topics“ and you get a list of
available destinations.

Message Selector Select this check box if you want to specify a condition on incoming messages.
Once you select the check box, you can enter your message selector below. If
any syntax error is found, the mistake is underlined. By locating the cursor
over the text area, a tooltip appears and gives you information on the
mistake.

Message Filter The message filter field lets you enter the filter criteria. That field and the two
check boxes located to right to it determines whether a detected message is
retained or ignored by Opensphere. When a message gets detected,
Opensphere by default (both check boxes unselected) examines whether this
value is contained somewhere in the message. If this is not the case, the
message gets discarded and the user won’t see it at all.

Regular Expression: If this check box is selected, Opensphere checks if the
string representation of the entire message matches the specified filter
criteria.

Inverse: The application of the message filter can be inversed by selecting this
check box.

Defining a message filter does not reduce network traffic since message
filtering is done client side in the message consumer. Filtering voluminous
messages slows down the receiving program that has to check for the
occurrence (the match) of the specified value within the whole message.

Message filtering is not available if the destination type “QUEUE” is set.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 88 of 156

Option Description

Terminate after… The selected check box together with the number in the behind located text
field tells the subscriber to stop after the specified number of messages have
been received and processed.

In case the trailing check box “Exceeding message generates error” is
selected, the subscriber however does not stop immediately when the
specified number of messages is received. It only stops when an additional
message is detected or if the idle timeout is reached. An additional message
in this case generates an error.

To get a subscriber checking that no message is sent on a certain subject for
example, you would have to specify 0 message(s) and to select the check box
“Exceeding message generates error”. As soon as it detects a message, it
would then generate an error.

Abort after… The selected check box together with the specified number of seconds
indicates that the process has to stop after the specified time of inactivity.
The time of inactivity is the time elapsed since the last incoming message has
been processed. The trailing check box “Generates error” indicates if an error
must be generated in case the defined idle time is exceeded without having
received a message.

Message Table Size The maximum number of messages that are contained in the message table.
This table appears on the “Messages” tab from the tree node detail view.

Write incoming
messages to file

Select this check box if you want the subscriber to write inbound messages to
a file specified in the below located text field.

 User Manual . Opensphere Release 2.5

Page 89 of 156 copyright © centeractive ag

4.4.4. JMS QUEUE BROWSER

The JMS Queue Browser acts same as the JMS Message Consumer without being able to reply to

messages. This module lets you download messages from the specified queue without removing

them.

The dialog below allows you to configure the JMS Message Browser.

The options are similar to the Message Consumer options. Compared to Message Consumer, Queue

Browser has no ending condition as it downloads messages from the specified queue and stops

immediately after the last message. There is no transacted feature either as the Queue Browser does

not alter the downloaded messages.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 90 of 156

4.5. TIBCO RENDEZVOUS

Tibco Rendezvous® messages are self-describing tree like structured data constructs. The top level

message node holds information on the send subject and the reply subject and it contains zero or

more dependent message fields. Such fields are sub-messages (field groups) containing themselves

other fields or they are payload data fields.

4.5.1. RENDEZVOUS MESSAGE EDITOR

TIBCO Rendezvous messages within Opensphere are shown and edited using the standalone

message list editor (menu item Message > Message Editor…) and through the multi message

document editor (menu item Message > Multi Message Doc Editor…). Rendezvous specific program

nodes such as the “RV Publisher” also let you edit Rendezvous messages directly within their property

dialog.

The message list editor lets you display and modify existing messages but it also offers the possibility

to create messages from scratch. A message can be read from a file and saved back either to the

application specific XML format (.rvm) or as rvscript (.rvs). To save a message as rvscript, select the

menu item File > Save As rvscript… .

Each Rendezvous message has exactly one send subject and may have a reply subject. While the send

subject can be edited directly within the message table appearing on top of the dialog, both subjects

can be edited also within the detail view that gets displayed as soon as the message root node gets

selected. The message root node detail view contains also an area where the text representation of

the entire message appears.

 User Manual . Opensphere Release 2.5

Page 91 of 156 copyright © centeractive ag

Non root nodes are either message fields or message field groups, represented either by a sheet or a

folder. The detail view of message field groups is similar to the root node, you can choose between

the two views. The “Field Group” view however does not contain fields for editing subjects but others

that let you edit their name and identity. In both, the root node and the message group detail view,

you can switch to the table view by selecting the bottom located “Direct Dependents” labeled tab.

This is useful for getting a quick overview of all direct dependent nodes. The table view is an explorer

like representation of the selected tree node. If the top level message node or a sub-message is

selected, the detail view shows all its dependent nodes within a table. All editable cells appear with

white background while non-editable cells appear with gray background. Editable value cells have an

icon on their right; it invokes a specific editor dialog as soon as you click on it.

If a message field node other than a field group is selected (data node), the detail view of its parent

node is shown but the row representing the selected node gets also selected in the table (appears

with blue background on Windows systems i.e.).

The send subject - as well as the reply subject - of the top level message node does not appear in the

table detail view. To display and edit them, you will have to select the root node and switch to the

default view (for detail view)

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 92 of 156

The detail view of message field nodes by default appears with fields that let you edit their name, the

identity, the data type and the value of course. Depending on the data type a certain edit format is

required. Opensphere provides data type related support by displaying the expected format pattern,

through popup editors and through specific built-in editors. Editing date/time, binary and XML data

for example is fast and seamless and does not require to switch to any tool external to Opensphere.

 User Manual . Opensphere Release 2.5

Page 93 of 156 copyright © centeractive ag

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 94 of 156

The Rendezvous message specific items appearing in the menu and/or the tool bar of the message list

editor offer the following functionality:

Item Description

Save as rvscript Saves the messages currently contained in the editor to a file that can
be used by an rvscript. The file extension by default is rvs.

 Rendezvous Transport Pops up a dialog where you can
change the transport options used
by the publisher

 Send Message Publishes the current displayed Tibco Rendezvous® message on the
transport defined within the transport options dialog. The transport
can be changed temporary through the menu item Tools > Rendezvous
Transport…, which will display the above shown option dialog.

Each tree node has its own popup menu that is displayed when you right click on it. Some of the

actions available in the popup menu may also be performed by pressing a button from the toolbar

appearing on top of the tree:

Button Description

 Add Sub Message Adds a sub message (message field group) to the selected node

 Add Message Field Adds a message field to the selected node

 User Manual . Opensphere Release 2.5

Page 95 of 156 copyright © centeractive ag

Button Description

 Duplicate Sub Message Makes a copy of the selected sub message (message field group)
node and adds it to the parent node

 Duplicate Message Field Makes a copy of the selected message field node and adds it to the
parent node

 Move Up Moves the selected node up to the previous position within its
parent node

 Move Down Moves the selected node down to the next position within its parent
node

 Expand All Expands the node and all its dependent nodes recursively

 Collapse All Collapses the node and all its dependent nodes recursively

 Remove Removes the selected node and all its dependent nodes

4.5.2. RV PUBLISHER

 The RV Publisher acts as publisher for one or several predefined Tibco Rendezvous® messages

using the default reliable message delivery or the certified message delivery protocol. You can import,

modify or create messages to be published, define the number of iterations and the interval to be

observed between. Each message in the defined list may be different in structure and value and may

have different send and reply subject. The messages defined in the list are published sequentially

starting from the first to the last occurrence and then restarting with the first one.

The messages to be published can contain markers that are replaced by the value of project

dependent substitution variables. Markers can also be replaced by the corresponding data of a single

row when the driving component for sending messages is a row set. Row sets can be defined as static

data within an editor but they can also be the result of an SQL select statement that gets executed

each time the RV Publisher gets started.

The RV publisher can also be run using request/reply together with an INBOX or with your self defined

reply subject.

There are many scenarios an RV Publisher can be employed, some of them are listed below.

 Simulate an adapter

 Kick off a business process by sending one or several initialization messages

 Send a set of recorded messages for help debugging an existing program

 Publish a bunch of previously recorded messages to test a new software module

 Publish a huge amount of messages with variable data from a database for stress testing a

software component

 Send messages to test a RV Application Simulator configuration

 etc.

4.5.2.1. PUBLISHER OPTIONS

An RV Publisher is easy configurable through the properties dialog shown below. The dialog is split

into two panels that can be selected through the tabs labeled “Definition” and “Messages”.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 96 of 156

 User Manual . Opensphere Release 2.5

Page 97 of 156 copyright © centeractive ag

RV Publisher options are explained in the following table

Option Description

Name The name that appears in the project tree together with the node
representing the publisher

Use Project Settings This checkbox defines what Tibco Rendezvous® transport shall be used for
this component. If the checkbox is selected, the Tibco Rendezvous®
transport defined in the project properties dialog is used. If the checkbox
is not selected, the transport parameters defined on the RV Publisher
properties dialog are used.

Service Tibco Rendezvous® service

Network Tibco Rendezvous® network

Daemon Tibco Rendezvous® daemon

Protocol Determines the quality of delivery of Rendezvous messages. Available
protocols are “Reliable Delivery” and “Certified Delivery”. If “Certified
Delivery” is selected, the “Advanced” button at the dialogues bottom gets
activated; it offers additional configuration of the certified delivery
transport.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 98 of 156

Option Description

Send Type Messages can be published or sent as a request. If a request is sent and the
reply subject of the predefined message(s) is an inbox, the program listens
on messages sent to that inbox. It blocks until a message is received or until
the defined time-out is reached. An inbox is specified (and automatically
created) by selecting the check box located beside the reply subject field. If
the send type is “Request/Reply” and the message reply subject is empty,
the message is simply published.

Time-out Time in seconds to wait for a reply message when a request message is
published (see Send Type). The exact behavior depends on the type of reply
subject defined for the published message.

1. If the reply subject is an INBOX, the option defines the time in seconds

the publisher blocks if no message is received on that inbox
(synchronous reply)

2. If the reply subject is a custom value, the publisher simply holds on
execution for the defined amount of seconds if no corresponding reply
message is detected (asynchronous reply). Corresponding in this case
means any message that has its send subject set to the value of the
published message’s reply subject.

3. If the reply subject is empty, time-out is ignored since such messages
are simply published.

Message Sending
Trigger

Determines how the message sending process shall be triggered. According
to the selection, some controls in this box get visible, some others non
visible.

Number of Iterations Number of iterations the publisher should send messages each time it is
started. This number has no effect if the publisher was told to send
messages forever.
Finishing sending all messages of the defined message list is considered to
be one iteration.

This field is visible only if the message sending trigger selection is “Iterator
Counter (Counter)”.

Infinite Indicates if messages should be sent (published) until the process is stopped
by external intervention. If this check box is unchecked, “Number of
Iterations” setting determines how many messages are sent.

This field is visible only if the message sending trigger selection is “Iterator
Counter (Counter)”.

Row Set This line shows what kind of data row set is used to control the message
sending process. Row sets are tabular data that can be defined in a separate
dialog by pressing the “Define…” button. In that dialog, you can either
define an SQL query on a database of your choice or you can define your
own static table data that will be stored to an XML file. If you define a row
set based on an SQL select statement, the statement gets executed every
time the RV Publisher is started.

When you decide to define static data, Opensphere lets you do that from
scratch but it also offers the possibility to import the data from a database.
In both cases, you can alter the data immediately or at any time later to
make it fit your needs. When after defining a new static row set you close
the Row Set Editor by pressing the “OK” button, Opensphere may ask you

 User Manual . Opensphere Release 2.5

Page 99 of 156 copyright © centeractive ag

Option Description

to save the row set data to an XML file of your choice. Opensphere can also
be told to decide by its own where to store the XML file. This can be
achieved by selecting the option “Automatically define name and location
of messaging component files” on the File panel within the tool options
dialog (select Tool > Tool Options… from the main menu). When this option
is selected and the static row set data was never saved to a file, you will see
“File: not yet defined” right to the “Define…” button. That’s there because
Opensphere will not automatically assign a file name and save the data to it
until the property dialog gets closed through the “OK” button.

Please consult the chapter “3.5 Row Set Editor” for detailed information
about the row set editor.

When running the RV Publisher, the rows from the row set (regardless if
resulting from an SQL query or from static data) are traversed one by one
until the last row is reached. Every row will trigger the sending action of all
messages present in the message list, hence corresponds to one iteration.
The values from the current row can be used as string type substitution
values in the messages of that one iteration. To make the substitution
happen, you simply place the column name, enclosed by the appropriate
pre- and postfix wherever you wish within your message, same as you do
with ordinary substitution values (see 2.3 Substitution Variables).

This field is visible only if the message sending trigger selection is “Data Row
Set”.

Interval Sets the time in milliseconds the publisher should wait between messages
when sending them. If the message being sent is a request where the
publisher waits on a reply message (inbox), then the publisher waits the
time specified after having received the reply.

Generates error… Indicates whether an error should be generated if using request/reply send
type and no corresponding reply message is received within the defined
timeout period. An error will be generated only in case the reply subject is
an inbox however.

Message Table Size The maximum number of messages that are contained in the message
table. This table appears on the “Messages” tab from the tree node detail
view.

Write incoming reply
messages to file

Select this check box if you want the RV Publisher to write received reply
messages to a file specified in the below located text field. This feature is
available only in case that the send type is “Request/Reply”.

If “Certified Delivery” protocol is selected within the “Communication” box on the RV Publisher

properties dialog, the “Advanced” button gets activated and lets you display a dialog for configuring

that protocol in detail.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 100 of 156

The advanced options for the certified delivery protocol are explained in the following table

Option Description

CM Name Name of the persistent correspondent. If the CM Name is not set, Tibco
Rendezvous® generates a unique, non-reusable name for the certified
delivery transport. A correspondent can persist beyond transport
destruction only when it has BOTH a reusable name AND a file-based
ledger.

Ledger Name Name of the file based ledger. If the Ledger Name is not set, then the new
transport stores its ledger exclusively in process-based storage, the
correspondent is not persistent.
If this option specifies a valid file name, Rendezvous uses that file for ledger
storage. If the transport is destroyed or the process terminates with
incomplete certified communications, the ledger file records that state.
When a new transport binds the same reusable name, it reads the ledger
file and continues certified communications from the state stored in the file.

Synchronize Ledger Specifies the way information must update the ledger. If the check box is
selected, operations that update the ledger file do not return until the
changes are written to the storage medium.

Request Old This parameter indicates whether a persistent correspondent requires
delivery of messages sent to a previous CM transport with the same name,
for which delivery was not confirmed. Its value affects the behavior of other
CM sending transports.

4.5.2.2. ADDITIONAL FEATURES

Except the configurable behavior that is defined in the property dialog, an RV Publisher offers a

number of additional features.

Like any other executable node or test step, a publisher node can be exported to an XML file through

the “export” button located in the main toolbar or through the corresponding menu item from

the specific pop-up menu. It may then be re-imported to a folder or a test case regardless whether it

was exported from an executable node or a test step.

By selecting the menu item “Save as rvscript…” from the nodes pop-up menu, the publisher is saved

as rvscript to a file defined by the user. This ready to use script can be run unchanged or adapted to

your needs. Below listing shows an rvscript generated from a simple Rendezvous Generic Publisher

node.

 User Manual . Opensphere Release 2.5

Page 101 of 156 copyright © centeractive ag

4.5.3. RV SUBSCRIBER

 This node subscribes to a Tibco Rendezvous® subject or a subject hierarchy and receives

corresponding messages to which it is able to reply with predefined messages. Depending on the user

settings it buffers inbound messages and/or displays their content in a message dialog. The subscriber

replies to received messages by sending one or several reply messages either as a bunch or

sequentially. Single messages or message collections can be imported, freely edited and saved to a file

using the message editor present in the option dialog.

An RV Subscriber can be used for the following tasks:

 Simulate a simple Rendezvous® enabled application

 Simulate an adapter including its automatic and condition depending shut down

 Reply to incoming messages and help debug or test a new program

 Record a predefined number of messages and save them to an XML file for further use in

other programs or scripts

 etc.

4.5.3.1. SUBSCRIBER OPTIONS

A subscriber is easy configurable through the option dialog shown below. The dialog is split into two

panels that can be selected through the tabs “Definition” and “Reply/Forward Messages”.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 102 of 156

 User Manual . Opensphere Release 2.5

Page 103 of 156 copyright © centeractive ag

Subscriber options are explained in the table below

Reply/Forward Message

Option Description

Reply/Forward all
defined messages
together

Indicates whether all predefined messages should be replied and/or
forwarded together in response to an inbound message.
If the check box is selected, all messages are sent according to their definition.
If the check box is not selected, a single predefined message is sent each time
an inbound message is detected. The messages are processed sequentially
starting with the first message in the table up to the last one.

Reply/Forward table
columns

The table columns “Reply” and “Forward” indicate for each predefined
message individually whether they should be replied and/or forwarded in
response to an inbound message.
If the “Reply” column check box is selected, the message is sent to the reply
address of the inbound message ore simply ignored it the inbound message
does not have a reply subject defined.
Messages that have the “Forward” column check box selected are sent to the
send subject defined for them.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 104 of 156

Reply/Forward Message

Subscription
Definition

Option Description

Name The name that appears in the project tree together with the node
representing the subscriber

Use Project Settings This checkbox defines what Tibco Rendezvous® transport shall be used for this
component. If the checkbox is selected, the Tibco Rendezvous transport
defined in the project properties dialog is used. If the checkbox is not
selected, the transport parameters defined on the RV Subscriber properties
dialog are used.

Service Tibco Rendezvous® service

Network Tibco Rendezvous® network

Daemon Tibco Rendezvous® daemon

Listen on Subject The subject or subject hierarchy, the process should subscribe to.

Protocol Determines the quality of delivery of Rendezvous reply or forward messages.
Available protocols are “Reliable Delivery” and “Certified Delivery”. If
“Certified Delivery” is selected, the “Advanced” button at the dialog bottom
gets activated; it offers additional configuration of the certified delivery
transport (The Advanced options dialog settings are explained in detail in the
chapter “Rendezvous Generic Publisher”)

Time-out Time-out in milliseconds the listener call-back method has to wait before to
process the next inbound message

Message Filter The message filter field lets you enter the filter criteria. That field and the two
check boxes located to right to it determines whether a detected message is
retained or ignored by Opensphere. When a message gets detected,
Opensphere by default (both check boxes unselected) examines whether this
value is contained somewhere in the message. If this is not the case, the
message gets discarded and the user won’t see it at all.

Regular Expression: If this check box is selected, Opensphere checks if the
string representation of the entire message matches the specified filter
criteria.

Inverse: The application of the message filter can be inversed by selecting this
check box.

Defining a message filter does not reduce network traffic since message
filtering is done client side in the message consumer. Filtering voluminous
messages slows down the receiving program that has to check for the
occurrence (the match) of the specified value within the whole message.

 User Manual . Opensphere Release 2.5

Page 105 of 156 copyright © centeractive ag

Reply/Forward Message

Terminate after… The selected check box together with the number in the behind located text
field tells the subscriber to stop after the specified number of messages have
been received and processed.

In case the trailing check box “Exceeding message generates error” is selected,
the subscriber however does not stop immediately when the specified
number of messages is received. It only stops when an additional message is
detected or if the idle timeout is reached. An additional message in this case
generates an error.
To get a subscriber checking that no message is sent on a certain subject for
example, you would have to specify 0 message(s) and to select the check box
“Exceeding message generates error”. As soon as it detects a message, it
would then generate an error.

Abort after… The selected check box together with the specified number of seconds
indicates that the process has to stop after the specified time of inactivity. The
time of inactivity is the time elapsed since the last incoming message has been
processed.

The trailing check box “Generates error” indicates if an error must be
generated in case the defined idle time is exceeded without having received a
message.

Message Table Size The maximum number of messages that are contained in the message table.
This table appears on the “Messages” tab from the tree node detail view.

Write incoming
messages to file

Select this check box if you want the subscriber to write inbound messages to
a file specified in the below located text field.

If “Certified Delivery” protocol is selected within the “Communication” box on the RV Subscriber

properties dialog, the “Advanced” button gets activated and lets you display a dialog for configuring

that protocol in detail.

The advanced options for the certified delivery protocol are explained in the following table.

Option Description

CM Name Name of the persistent correspondent. If the CM Name is not set, Tibco
Rendezvous® generates a unique, non-reusable name for the certified
delivery transport. A correspondent can persist beyond transport
destruction only when it has BOTH a reusable name AND a file-based
ledger.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 106 of 156

Option Description

Ledger Name Name of the file based ledger. If the Ledger Name is not set, then the new
transport stores its ledger exclusively in process-based storage, the
correspondent is not persistent.
If this option specifies a valid file name, Rendezvous uses that file for ledger
storage. If the transport is destroyed or the process terminates with
incomplete certified communications, the ledger file records that state.
When a new transport binds the same reusable name, it reads the ledger
file and continues certified communications from the state stored in the file.

Synchronize Ledger Specifies the way information must update the ledger. If the check box is
selected, operations that update the ledger file do not return until the
changes are written to the storage medium.

Request Old This parameter indicates whether a persistent correspondent requires
delivery of messages sent to a previous CM transport with the same name,
for which delivery was not confirmed. Its value affects the behavior of other
CM sending transports.

4.5.3.2. ADDITIONAL FEATURES

Except the configurable behavior that is defined through the option dialog, a Rendezvous Generic

Subscriber offers the following features.

Like any other executable node or test step, a subscriber node can be exported to an XML file through

the “export” button located in the main toolbar or through the corresponding menu item from

the specific pop-up menu. It may then be re-imported to a folder or a test case regardless whether it

was exported from an executable node or a test step.

4.5.4. RV APPLICATION SIMULATOR

 The RV Application Simulator extends the RV Subscriber program. It is extremely useful where an

intermediate implementation of Tibco Rendezvous® enabled components such as an adapter is

needed. It lets you test modules that depend on other components in case they are not yet ready.

The “Reply/Forward Messages” panel of the simulator property dialog shown below contains a

mapper. To switch from the standard message editing to the mapping view, you have to press the

“mapping view” button located in the toolbar. Press this button again to switch back to standard

message edit mode.

The top located message within the message table is the Source Message Template (SMT), a message

that holds the structure of the expected incoming messages. All other messages in the array are

messages that can be used to be replied or forwarded to whatever subject you want (such messages

may have been recorded previously using the RV Message Detector or created manually through the

Message List Editor). The fields of the expected inbound message SMT can be assigned to fields of one

or several outbound messages with individual structure each. During program execution, the values of

the mapped fields are automatically copied from the source to the target field and those dynamically

built messages are replayed and/or forwarded according to the definition you made. Some fields of

course may also still contain their initial static values.

 User Manual . Opensphere Release 2.5

Page 107 of 156 copyright © centeractive ag

As mentioned above, the first message row appearing in the application simulator property dialog is

always that of the SMT, it has no row number itself however. The SMT is a message that can be edited

the same way, as would be any other message within the dialog. The SMT must have the same

structure (including field names) for fields that have mappings to target messages fields; otherwise

the field values cannot be copied to the target messages.

Mappings are defined between message fields. To add a new mapping, simply click on a field node of

the source message (SMT), drag the mouse pointer to the desired field within the target message and

release the mouse button. A selected mapping is removed by pressing the delete key. To select a

mapping, move the mouse pointer on it (pointer gets changed to a hand) and press the left mouse

button.

Message mapping is subject to the following constraints:

 The names of the mapped field and of all its parent nodes must not include a forward slash

‘/’.

 Identical node names on the same hierarchical level must be avoided

4.5.4.1. ADDITIONAL FEATURES

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 108 of 156

Except the configurable behavior that is defined through the option dialog, a Rendezvous Application

Simulator offers a number of additional features.

Like any other executable node or test step, an application simulator node can be exported to an XML

file through the “export” button located in the main toolbar or through the corresponding menu

item from the specific pop-up menu. It may then be re-imported to a folder or a test case regardless

whether it was exported from an executable node or a test step.

By selecting the menu item “Save as rvscript…” from the nodes pop-up menu, the application

simulator is saved as rvscript to a file defined by the user. This ready to use script can be run

unchanged or adapted to your needs. Together with the application simulator script, Opensphere

generates a client test rvscript that is used to test the mappings of the generated application

simulator; the test script name is the same as the one defined for the application simulator script but

has prefix “Test”.

4.6. MESSAGE DETECTOR

The Message Detector is a module that detects messages of a certain type (Tibco Rendezvous® or

JMS) and presents them to the user through different views. It provides powerful message filtering

functionality and lets one easily edit, store and re-send detected messages. The module gets started

from inside the Opensphere application through the menu items Message > Rendezvous Message

Detector, Message > JMS Topic Message Detector, Message > JMS Queue Message Detector or

Message > EMS Monitor, it may also be invoked by pressing the corresponding button from the main

tool bar:

 This button starts the Message Detector in “Tibco Rendezvous” mode

 This button starts the Message Detector in “JMS Topic” mode

 This button starts the Message Detector in “JMS Queue” mode

Alternatively the Message Detector can be started as standalone

application through the Opensphere menu group on the windows

start menu. In that case the user has to choose the message type

he wants to listen on within the dialog shown beside.

The Message Detector listens on one or several destinations

(topics/queues/subjects or topic/subject hierarchies) the user

defines in the field located in the dialog tool bar. When defining

Tibco Rendezvous® subjects, feel free to use the known wildcards

such as the asterisk (*) that substitutes whole elements or the greater-than (>), which matches all the

elements remaining to the right. The field accepts multiple topics/subject entries separated by the

semicolon (;) each.

For each entered destination string (subjects, topics or queues), the Opensphere Message Detector

creates a separate listener regardless whether two destinations are identical or whether one

 User Manual . Opensphere Release 2.5

Page 109 of 156 copyright © centeractive ag

represents a subset of another destination. Every single listener reports received messages

independent from the other listeners. Therefore if for example you define the same destination twice

within the destination list, messages intercepted on that destination would be reported twice as well.

When the Message Detector gets started, it detects messages that are sent on the specified

destination (subject, topic or queue), buffers and displays them up to the configured buffer size.

Buffered messages of the selected row can be displayed within a Message List Editor by pressing the

appropriate button from the tool bar (). The messages may through that editor be modified

and saved to an XML formatted file for further use.

The Message Detector has two default views (tabs) on received messages:

The Message Sequence View on the other hand displays every single received message in a

chronological order; the last arrived on its bottom. When running the Message Detector in

“Tibco Rendezvous” or “JMS Topic” mode, all detected messages get displayed on the same

and unique Message Sequence View to clearly show the chronologically sequence of

detected messages.

The Destination Summary View is a condensed overview of all distinct destinations messages

have been detected for.

When the Message Detector is run in “JMS Queue” mode, a dedicated Message Sequence View

appears for each defined JMS queue.

When the Message Detector is run in “Tibco EMS Monitor” mode, two tabs named “Monitor Message

Sequence” and “Included Message Sequence” are shown one beside the other. The “Monitor

Message Sequence” shows all detected monitor messages in a chronological order. The “Included

Message Sequence” shows the sequence of original messages extracted from monitor messages if

there are any available.

All views have convenient pop-up menus that appear as soon as the user right clicks on a table row.

Single menu items let you directly display message details, save messages to a file, resend a message

etc.

4.6.1. MESSAGE SEQUENCE VIEW

This view shows every received message as a new table row. New detected messages are added to

the bottom of the table. The table size is limited to what the user chooses from the combo box

located top right on the dialog (“Sequence Buffer Size”). When a new message is added to the buffer,

the oldest one gets discarded in case the new added message would make the buffer size exceed.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 110 of 156

When the Message Detector is started as standalone application, the details of the selected message

are displayed at the bottom of the view as shown in the figure above. The message detail view can be

hidden or displayed again using the button.

4.6.2. DESTINATION SUMMARY VIEW

Each different destination(subject, topic or queue) received by the program at runtime appears on

the Destination Summary View in its own row together with a counter that reflects the number of

messages totally received on that destination. An additional column shows the message buffer size

and the number of messages that are currently present in the buffer. The current buffer fill degree is

represented by a yellow bar that turns more and more into red as the fill grade approaches the buffer

limit. The overall message buffer size can be changed by selecting the appropriate entry from the

combo box located top right in the tool bar. To change this value however, message detecting must

not be running. The buffer size of single message summary rows may be changed by right clicking the

corresponding row and selecting the menu item Change Buffer Size… from the pop-up menu, this can

be done while message detecting is running.

 User Manual . Opensphere Release 2.5

Page 111 of 156 copyright © centeractive ag

4.6.3. TOOL BAR AND POP-UP MENUS

The table below gives an overview of the toolbar buttons of the Message Detector:

Button Description

 Open File Lets you select and open a message event file that was previously
written to a message event swapping directory (see 0
Message Event Swapping).

Please keep in mind that the current defined message buffer size may
prevent the Message Detector from loading all message events from the
selected file.

 Start If the Message Detector is launched in “Tibco Rendezvous” or “JMS
Topic” Mode

Starts detecting messages on the specified destinations
(subjects, topics or queues) and keeps doing this until it gets
stopped through the “Stop” button or until the Message
Detector dialog gets closed.

If the Message Detector is launched “JMS Queue” Mode

Removes all current displayed messages from the “Destination
Summary View” and the “Message Sequence Views” and starts
downloading the messages from all specified queues. The
program stops as soon as all messages are downloaded from
the queues or if the user presses the “Stop” button. Keep in
mind that the messages are not physically removed from the
queues but remain unchanged there.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 112 of 156

Button Description

 Stop Stops the message detecting process. It can be restarted at any time
through the start button.

 Remove Rows Removes all rows from the message tables

 Show Message Shows the most recent detected message represented by the selected
row of the message summary table or the selected row from the
message sequence table. The message is shown within the Message List
Editor.

 Show Message Buffer Shows all currently buffered messages represented by the selected row
of the message summary table or all messages from the message
sequence table. This messages are shown within the Message List Editor.
The same dialog is shown as well when double clicking the left mouse
button on any table row.

The messages appearing in the table on top of the editor are ordered
chronologically ascending, the message with the highest row number
being the most recent detected one.

 Enable Auto Refresh This button enables automatic
refreshing of the displayed
messages. The user has to
enter the number of seconds
to be observed by the
application prior to
automatically refresh the
content of the message
detector. This button is only

available in case the message detector is launched in “JMS Queue”
mode.

Automatic refreshing will be active only when the message detecting
process gets started next time by using the regular “Start” button.

 Disable Auto Refresh This button disables automatic refreshing of the displayed messages

 Show Predefined
Listener Definitions

Shows a dialog that lets you predefine message listeners by editing their
transport and destinations/subjects. These definitions are made
persistent by the application.

 Show Current
Connection Definition

Displays a dialog where the user can define the settings of the current
used connection (or transport) for detecting new messages. The settings
can be changed only if message detecting is not running. Restarting the
message detecting process with changed settings does not automatically
remove previous detected messages from the message tables.

 User Manual . Opensphere Release 2.5

Page 113 of 156 copyright © centeractive ag

Button Description

 Show Message
Selector Dialog

Displays a dialog where the user can define a message selector when
working with JMS listeners. The message selector can only be edited if
the JMS listeners defined on the message detector are not running.

The message selector field is available for JMS message listeners only; it
lets you define SQL like criteria that reduce the set of received messages
(please consult standard JMS documentation). Defining message
selectors prevents the JMS provider of delivering certain messages to
the consumer and can significantly reduce network traffic.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 114 of 156

Button Description

 Show Message Filter
Dialog

Displays a dialog where the user can define message filter options in
order to have corresponding messages displayed on a separate tab. The
user can enter a simple value that shall be contained in a message or he
may define a regular expression that is applied on the string
representation of the entire message.

The message filter field lets you enter any value at any time. Additionally
you may also define a name for the filter. When you define the first
filter, a new tab gets added to the message detector and messages from
the “Message Sequence” tab immediately also appear in the table of
that tab if their content matches the filter criteria. Newly detected
messages are checked by Opensphere and are added to the filter table in
case their content matches the filter criteria.

Existing filter criteria can be changed on the fly if you press the
button when the corresponding tab is selected or the corresponding
button that appears directly on the tab. You can add new filters and
inherently new tabs if you select the “Add new tab” check box.

Defining a message filters does not reduce network traffic since message
filtering is done by the message consumer. Filtering voluminous
messages will even slow down the receiving program that has to check
for the occurrence of the specified value within the whole message.

The message filter can be inversed by selecting the check box located
top right on the dialog.

 Toggle Message
Detail View

Shows or hides the message details in the message sequence view. This
button appears only in case the Message Detector is run as a standalone
application.

 Dock Docks the Message Detector at the bottom of the application in its own
tabbed panel.

 Undock Undocks the Message Detector from the bottom of the application and
shows it as standalone dialog.

Destination Field This text field accepts the destination (Rendezvous subject, JMS topic or
queue), the Message Detector shall work with.

 Find JMS Destination
This button lets you search for available destinations to be added to the
destination field. The function is available only if the current selected
JMS Provider has an admin class defined (see Error! Reference source
ot found. Error! Reference source not found.).

 User Manual . Opensphere Release 2.5

Page 115 of 156 copyright © centeractive ag

Button Description

Sequence Buffer Size This combo box lets you change the size of the message buffers, which
corresponds to the message table size for the message sequence and
the filter tabs. On the destination summary tab, the buffer size is applied
on a “per destination” way.

The buffer/table size is limited to what the user chooses from the combo
box. When a new message is added to the table, the oldest one gets
discarded in case the new added message would make the buffer size
exceed.

4.6.4. MESSAGE TIMELINES (FILTERED MESSAGES)

When one or several message filters are defined (see Show Message Filter Dialog), the Message

Detector shows a chart on its bottom where a message timeline appears for every defined filter. A

message time line has a number of items attached that represent a message each.

When you move the mouse pointer over a message item, its destination together with the message

detection time will be displayed as a tool tip. In case a message item represents more than one

messages with identical detection time each, this would be shown in the tooltip as well, the figure

below for example shows an item that represents two messages since the tool tip starts with “2x”. If

you click on a message item, a message editor dialog pops up and lets you edit, store and resend the

message.

If a message timeline contains lots of message items, you may not be able to distinguish between

single messages. To get a more detailed view of the desired time period, you can zoom into the chart

by simply mark the desired area with the mouse pointer. Press the left mouse button and move the

mouse top left to see the original chart area again. By pressing the right mouse button, you will see a

pop-up menu that lets you further customize the message chart and perform other functions like

printing the chart for example.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 116 of 156

4.6.5. MESSAGE EVENT SWAPPING

The Message Detector keeps detected messages in the buffer (table) up to the number defined in the

combo box appearing right on the toolbar. When newly added messages exceed the defined buffer

size, the oldest message gets discarded and cannot be retrieved anymore. In order to be able to

access such messages at some time later on, the program lets you define a folder where it shall write

such discarded message events to. Optionally you can also instruct the Message Detector to write all

detected message events to the file system and not only the ones that exceed the buffer size.

Message events are written to a file within the configured target directory up to the size defined by

the user. Each time the size of the message event file is reached, a new one gets created. The file

names contain the name of the GUI tab together with the creation date in the format “yyyyMMdd-

hhmmss”.

In front of the message sequence and the message filter tabs (see figure below) you’ll find a button

that lets you open the message swap options dialog.

The button appears with a different icon depending whether message event swapping for that

specific tab is currently defined or not:

Icon Description

 Message swapping for this tab is currently not enabled (not defined)

Message swapping for this tab is currently enabled

If you click the button, the Swap Options dialog below appears and lets you either remove the

existing configuration or define a new one.

 User Manual . Opensphere Release 2.5

Page 117 of 156 copyright © centeractive ag

The different controls on the dialog are explained in the following table:

Control Description

Target Directory The directory where message events shall be written to. Message swapping
is enabled as soon as this field contains a valid directory name.

The button opens a dialog where you can browse the file system and
select an existing target directory.

The button removes the current entry from the target directory field
and thereby disables message swapping if the dialog would also get closed
through the “OK” button.

Maximum File Size The maximum size in kilobytes for message event swapping files. Each time
the size of the current file is exceeded; a new file is created and gets the
following message events written to it.

Since the message events stored in swapping files are most often aimed to
be reloaded into the Message Detector program, the file size should be
chosen carefully. The current buffer size defined in the GUI may prevent you
from loading all message events contained in such a file.

Write all messages If this radio box is selected, all detected message events that appear in the
table of the corresponding tab will also be written to the swapping
directory.

Write exceeding
messages only…

If this radio box is selected, message events are written to the file system
only in case they get discarded from the table of the corresponding tab
upon buffer overflow.

4.6.6. PERSISTENT LISTENER DEFINITIONS

When the message detecting process is not running, you can open a dialog that lets you define

persistent listener definitions. Simply add new listener definition by activating the button

located top right on the dialog. If the dialog gets closed through the “OK” button, the current selected

definition is copied to the Message Detector and determines how to detect and handle new

messages.

4.6.6.1. RV LISTENER

When launching the Message Detector in “Tibco Rendezvous” mode, the listener definition dialog lets

you define listeners with different Rendezvous transports, Rendezvous string encoding as well as one

or several subjects to listen on. The Rendezvous listener definition dialog gets invokes through the

 button. In case you enter more than one subject, they must be separated by a semicolon (;) each.

In the “Message Filter” field at the bottom of the dialog you can define filter criteria. When you

choose a message listener with a non-empty message filter, the program automatically creates a

tabbed message filter panel on the Message Detector. When a new message gets detected, the

program checks the filter value against the whole message (send and reply subject and message

content). Messages will be added to the tabbed filter panel only in case they match the defined filter

criteria.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 118 of 156

Defining a message filter does not reduce network traffic since message filtering is done by the

message consumer. Filtering voluminous messages slows down the receiving program that has to

check for the occurrence of the specified value within the whole message.

If the entered subject is able to detect Rendezvous host status info advisory messages, the Message

Detector automatically creates two additional tabbed panels that will contain a row for every

detected host and service as follows:

Host Status Info (Total) Each row contains a snapshot of the value from the last detected
host status info advisory message for a given host and service. The
statistic values within each snapshot are cumulative since the
daemon began communicating on the service.

Host Status Info (Per Minute) The statistical values from each row are calculated using the last
two detected host status info advisory message for a given host
and service. The amount corresponds to the value increase over a
period of one minute.

4.6.6.1.1. ADVANCED

Activate the “Advanced“ button to define optional settings for Tibco Rendezvous® listeners.

Custom Editors

In the top area of the panel, you can define a number of custom editors for specific Rendezvous field

data. Those editors get used when Rendezvous messages will be edited in the message editor dialog.

 User Manual . Opensphere Release 2.5

Page 119 of 156 copyright © centeractive ag

Simply press the “add” button and define what custom editor to use for what kind of field data. Every

definition must specify the editor class together with one or several field identifiers such as name, ID

or data type. Opensphere always uses the editor where the most field identifiers match.

Option Description

Field Name Name of the Rendezvous message field

Field ID ID of the Rendezvous message field

Data Type Data type of the Rendezvous message field

Editor Class Name The full name of a class that extends the editor class
com.centeractive.opensphere.msg.JCustomDataEditor. This
abstract class has the following methods that are invoked by Opensphere to set
Rendezvous field data and to determine whether this data is editable. In case it
is editable, Opensphere makes sure, the edited value gets written back to the
corresponding Rendezvous message field.

public boolean isEditable()

This method indicates whether the field data is editable. If this method returns
true, the method getData has to be overwritten to return the data contained in
the editor

public Object getData()

This method returns the data contained in the editor. This method gets invoked
by Opensphere only in case the method isEditable returns true

abstract public void setData(Object data)

This method sets the data to be contained in the editor. This method gets
invoked by Opensphere each time the Rendezvous field node gets selected in
the message editor

User Data Type Handler (Encoder/Decoder)

In the bottom area of the panel you can define a class that is responsible for encoding and/or

decoding Rendezvous user types.

Option Description

Handler Class
Name

The full name of a class that implements the interfaces

com.tibco.tibrv.TibrvMsgEncoder and/or
com.tibco.tibrv.TibrvMsgDecoder

User Data Types Comma separated integer values between TibrvMsg.USER_FIRST(128) and

TibrvMsg.USER_LAST(255) each. The class TibrvMsg is in the package

com.tibco.tibrv.

4.6.6.2. JMS TOPIC LISTENER

When launching the Message Detector in “JMS Topic” mode, you can define different listeners with

their own JMS connection and one or several topics to listen on. In case you enter more then one

topic, they must be separated by a semicolon (;) each. You can either freely edit the destinations

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 120 of 156

(topics) field or detect and add single topics to the list by selecting them from a dialog that pops up if

you press the “Add” button located top right to the field.

The “JMS Message Selector” lets you specify what messages to be detected, based on the values of

message headers and properties. The SQL like criteria reduces the set of received messages (please

consult standard JMS documentation). Defining message selectors prevents the JMS provider of

delivering certain messages to the consumer and can significantly reduce network traffic.

In the “Message Filter” field at the bottom of the dialog you can define filter criteria. When you

choose a message listener with a non-empty message filter, the program automatically creates a

tabbed message filter panel on the Message Detector. When a new message gets detected, the

program checks the filter value against the whole message (destination name, properties, body).

Messages will be added to the tabbed filter panel only in case they match the defined filter criteria.

Defining a message filter does not reduce network traffic since message filtering is done by the

message consumer. Filtering voluminous messages slows down the receiving program that has to

check for the occurrence of the specified value within the whole message.

 User Manual . Opensphere Release 2.5

Page 121 of 156 copyright © centeractive ag

4.6.6.3. JMS QUEUE BROWSER

When launching the Message Detector in “JMS Queue” mode, you can define different persistent

listener definitions with their own JMS connection and one or several queues to download messages

from. The queue listener definition dialog gets invokes through the button. In case you enter

more than one queue, they must be separated by a semicolon (;) each. You can either freely edit the

destinations (queues) field or detect and add single queues to the list by selecting them from a dialog

that pops up if you press the button located top right on the field.

The “JMS Message Selector” lets you specify what messages to be detected, based on the values of

message headers and properties. The SQL like criteria reduces the set of received messages (please

consult standard JMS documentation). Defining message selectors prevents the JMS provider of

delivering certain messages to the consumer and can significantly reduce network traffic.

In the “Message Filter” field at the bottom of the dialog you can define filter criteria. When you

choose a message listener with a non empty message filter, the program automatically creates a

tabbed message filter panel on the Message Detector. When a new message gets detected, the

program checks the filter value against the whole message (destination name, properties, body).

Messages will be added to the tabbed filter panel only in case they match the defined filter criteria.

Defining a message filter does not reduce network traffic since message filtering is done by the

message consumer. Filtering voluminous messages slows down the receiving program that has to

check for the occurrence of the specified value within the whole message.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 122 of 156

4.6.6.4. TIBCO EMS™ MONITOR

This message detecting mode is applicable only if you work with TIBCO Enterprise Message Service™

(EMS) software. Prior to be able to use the Message Detector as a TIBCO EMS Monitor, you must

define a JMS Provider for EMS.

When launching the Message Detector in “Tibco EMS Monitor” mode, you can define different

listeners with their own EMS connection and specific monitor topics that must all start with

$sys.monitor. When adding a new listener definition, the topic $sys.monitor.*.* appears as the

default value in the “Destinations” field. This topic lets you detect all messages sent by the EMS server

to notify about certain events. To see monitor messages related to JMS message communication, you

have to add destination specific topics according to the EMS documentation. This can be achieved by

pressing the “Add” button located top right of the “Destination” field. Available destinations get

 User Manual . Opensphere Release 2.5

Page 123 of 156 copyright © centeractive ag

shown within a pop-up dialog from where they can be selected; the program makes sure to generate

the appropriate monitor topic. If for example you choose the topic named topic.test.5, the generated

monitor messages would be $sys.monitor.T.*.topic.test.5. Each topic in the “Destination” field must

be separated by a semicolon (;). Further details about monitoring topics can be found in the official

EMS documentation.

When a new monitor definition gets added to the list, a default JMS message selector appears in the

corresponding field. This is used for monitoring message communication and has the effect that you

would see a monitor message only when a message gets posted by a producer. Therefore the

messages appearing on the “Included Message Sequence” tab would be unique. You may be

interested in other events as well when monitoring message communication; so you have to remove

the JMS message selector or adapt it to your needs.

Except the above described monitoring topics and the pre-defined message selector, the listener

definition is done the same as would be a normal “JMS Topic Listener”.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 124 of 156

4.6.7. DETECTING TIBCO EMS™ QUEUE MESSAGES

This section is applicable only if you work with Tibco Enterprise Message Service™ (EMS) software.

When you’re using the Message Detector in the JMS Queue Browser mode, you must be aware that

messages sent to a JMS queue may be consumed by another program even before you can see them.

If you are interested in messages sent to a queue and you want to make sure you can see all messages

arriving to that queue, you have to switch off all other message consumer programs.

Using the EMS Monitor you can however see the queue messages when you add the appropriate

monitor topic. The queue queue.test.1 for example can be monitored using the topic

$sys.monitor.Q.*.queue.test.1. When running the message detector, the original message contained

in the monitoring message gets extracted and displayed on a separate tabbed pane named “Included

Message Sequence”.

As an alternative to monitoring messages you may create a JMS destination bridge that will

automatically duplicate every message to a second destination, a topic or a queue. There is no impact

on the original message sent to the queue. If for example we got a queue named sample.queue, the

following entry in the EMS configuration file bridges.conf would make sure that every message gets

replicated to the topic named sample.topic.

[queue:sample.queue]

 topic=sample.topic

5. DATABASE SUPPORT

Opensphere offers support for direct database operations. You may use a simple “SQL Query Viewer”

“SQL Processor” executable node, a “SQL Comparison” test step.

5.1. DATABASE CONNECTION

Prior to be able to establish a database connection, you have to define the appropriate JDBC driver

class and add the corresponding JDBC library to the classpath of Opensphere. Open the tool options

dialog by selecting the menu item Tool > Tool Options Properties… and select the node

Database/JDBC. Activating the “Add” button will then add a new JDBC driver definition to the list. The

name appearing in the list can be freely chosen. Each driver definition must define the driver class as

well as a sample URL that helps the user specifying a real URL at connection time.

 User Manual . Opensphere Release 2.5

Page 125 of 156 copyright © centeractive ag

Specific database connections are defined in different places

within Opensphere. According to the JDBC driver definition you

entered, you get the non-editable driver class name together

with the editable sample URL displayed in the top most text

fields. Depending on the driver, you will then have to define the user name and the password

together with additional arguments. One or several of those entries may be optional however.

5.2. SQL QUERY VIEWER

The SQL Query Viewer executes an SQL select statement on the database and presents the result in a

table. The data can be saved to an XML formatted file.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 126 of 156

5.3. SQL PROCESSOR

The SQL Processor executes one or several DDL or DML statements on the database.

 User Manual . Opensphere Release 2.5

Page 127 of 156 copyright © centeractive ag

5.4. SQL COMPARISON

The SQL Comparison is available as a test step within a test case. It compares the results of an SQL

SELECT statement against an expected result. The expected result (reference data) can be retrieved at

runtime from a database or it can be manually edited and stored in an XML file.

5.4.1. COMPARE FUNCTION

The comparison between the actual data retrieved from the database and the reference data is done

on field level, the selected compare function is applied on every single field. You can choose between

the following compare functions. String comparison is done lexicographically and based on the

127Unicode value of each character in the strings.

Function Description

equal to The checked value must be the same as the corresponding reference value.

not equal to The checked value must not be the same as the corresponding reference value.

less then The checked value must be less than the corresponding reference value.

greater then The checked value must be greater than the corresponding reference value.

less or equal to The checked value must be less or equal to the corresponding reference value.

greater or equal
to

The checked value must be greater or equal to the corresponding reference
value.

empty The checked value must be empty, the value of the corresponding reference
value is not considered.

not empty The checked value must not be empty, the value of the corresponding reference
value is not considered.

length The length of the checked value must be identical to the number specified in the
corresponding reference value

contains The checked value must contain the corresponding reference value.

is contained in The checked value must be contained in the corresponding reference value.

starts with The checked value must start with the corresponding reference value.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 128 of 156

ends with The checked value must end with the corresponding reference value.

matches The checked value must match the regular expression specified in the
corresponding reference value.

5.4.2. SQL QUERY

The actual data to be checked is retrieved from a database at runtime using a single SQL select

statement entered on the “Data” panel. If you select the “SQL Query” data type on the “Reference

Data” panel, a corresponding select statement must also be defined for retrieving the reference data

at runtime. Together with the query you have to specify a database connection.

In both cases the SQL editor lets you write comment either as line comment with leading double

slashes (// line comment) or as block comment that is delimited by a couple of a slash and a star (/*

block comment */).

The syntactical correctness of the entered SELECT statements is checked when the “Check” button is

pressed. If the used JDBC driver supports pre-compilation, the check method will send the statement

to the database for pre-compilation. Most drivers do not support pre-compilation. In such cases, the

statement is not sent to the database prior to its execution and only the starting key word is checked.

5.4.3. MANUALLY EDITED REFERENCE DATA

The reference data type can be chosen by selecting the appropriate radio button top right on the

“Reference Data” pane. If you select “Manually Edited”, the reference data has to be entered

manually into a table. The table structure (number and name of the columns) is to be defined by the

user within a dialog that pops up upon mouse click on the button. Table rows can be arranged

by moving them up or down. The reference data can also be loaded from a database () or a CSV file

() and be further edited within the dialog if required. The entered data is finally stored to a user

chosen XML file from where it will be read again at runtime.

 User Manual . Opensphere Release 2.5

Page 129 of 156 copyright © centeractive ag

The buttons that appear on top of the manually entered reference data table are the following.

Item Description

 Open File Opens an XML file and loads its content into the table. Any previous loaded data
will be removed and the table structure will correspond to the one defined in
the loaded file

 Save Saves the table data back to the XML file. If no file has been defined yet, a file
chooser dialog is displayed and lets the user chose the file.

 Save As Saves the table data into an XML file chosen by the user

 Define
Columns

Opens a dialog that lets the user
define the table columns.

Single columns can be added,
removed or simply moved to
another position.

 Load from
Database

Opens a dialog that lets you load data using an SQL query on a database of your
choice.

Any previous loaded data will be removed and the table structure will
correspond to the data retrieved from the database.

Be aware that the loaded data will have to be stored into a file and limit the
number of rows by carefully editing the query.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 130 of 156

 Load from
CSV File

This function lets you choose a CSV file from the file system and load its data
according to the options you define in the dialog shown below.

Column Names Line Number
Indicates what line within the CSV files contains the column names.
Lines appearing in front of this line will be ignored. The first line in the
file is number one. If the checkbox is not selected, the column names
are generated by Opensphere.

Field Separator
Indicates how single fields within the CSV file are separated. This field
can be left empty if the CSV file contains a single column.

Comment Identifier
Specifies how lines with comment are marked in the CSV file. If this field
contains a value, all lines that start with that value are considered to be
comment and will not be loaded.

Any previous loaded data will be removed and the table structure will
correspond to the data retrieved from the CSV file.

Be aware that the loaded data will have to be stored into an XML file in order to
be available for comparison.

5.4.4. COMPARISON RESULT

When the SQL comparison is run, the result with detected differences is reported to a dedicated

message pane within the test result pane of the enclosing test case. The following example shows

such a result report.

Start comparing SQL select result with reference data

row 3: FIRSTNAME…

row 5: FIRSTNAME…

row 9: FIRSTNAME…

comparison failed

To get well formatted and detailed information of a single row within a dedicated dialog, simply click

on it. The whole formatted report can be displayed by right clicking inside the message pane and

choosing the item View > Text Pane from the pop up menu. It could look like shown below.

Start comparing SQL select result with reference data

 row 3: FIRSTNAME

 User Manual . Opensphere Release 2.5

Page 131 of 156 copyright © centeractive ag

 expected <Grégoire > but was <Gregoire>

 row 5: FIRSTNAME

 expected <Henricson> but was <Henrichson>

 row 9: FIRSTNAME

 expected <Bernasconi> but was <Bernaconi>

 comparison failed

6. TEST ENGINE

6.1. TESTING USE CASES

This section illustrates the basic concept applied when testing different types of programs (modules)

with Opensphere. The use cases typically show a single module that communicates with Opensphere

components (i.e. Message Detector) over a unique communication protocol such as JMS. Real test

cases however may interact with several external modules and there may be different communication

protocol involved. To make distinction of the role the different components play in a scenario, the

items listed below got used.

Item Description

 Opensphere
Component

Configurable component such as a Rendezvous Publisher

 Expected Message Message definition file that specifiies how the actual messages have to
be compared. It defines the data or data portions expected at a certain
point during test execution.

 Execution Message
Flow

Message flow that happens during the test execution. This may
comprise a triggering messages, messages from and to Opensphere
components and the program that gets tested.

 Setup Message Flow Messages captured prior to the actual test execution and prepared as
expected data for comparison.

 Execution Message Message definition (data) file used for triggering the test execution and
messages captured during that execution.

 Test Result Comparison result viewable within the Opensphere program or within a
web browser once the result has been published

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 132 of 156

6.1.1. TIBCO RV TESTING

The figure below illustrates a simple use case that points out how Opensphere can be used to debug

and test a Tibco Rendezvous® (RV) enabled program.

6.1.1.1. TEST SETUP

1. The RV Message Detector records messages with a well-defined subject.

2. The Message List Editor is invoked directly from the RV Message Detector or from the AE

data import facility. It lets you edit the recorded messages and make them look like

messages you expect “My Program” to produce.

3. The triggering message that gets feed into the RV Publisher can be created the same way.

6.1.1.2. TEST EXECUTION

4. An XML file is loaded into the RV Publisher and the contained messages are published on the

predefined subject recursively as long as specified. The purpose of those messages is to

trigger some process in “My Program”. The XML file that gets loaded into the RV Publisher

may have been edited directly in the property dialog or it may previously have been recorded

using the RV Message Detector.

5. The program to be debugged or tested (My Program) maintains one or several subscriptions

and receives the published messages. While performing some tasks, it may send reply

messages but also send independent request messages that target another adapter or

application.

 User Manual . Opensphere Release 2.5

Page 133 of 156 copyright © centeractive ag

6. The RV Publisher reports expected reply messages or writes error messages if it does not

receive them.

7. The RV Application Simulator simulates an application that is supposed to respond to

requests. In our case it receives the request message from “My Program”, dynamically writes

specific data into a predefined acknowledge message and sends it back on the reply subject.

It may also forward dynamically build messages to another involved program. The RV

Application Simulator writes all received Tibco Rendezvous® messages to an XML file.

8. The expected messages get compared to the messages that were received by the RV

Application Simulator. The Message Comparator component goes through the predefined

comparison rules and reports the detailed result.

6.1.2. JMS TOPIC TESTING

The next use case illustrates how Opensphere components interact with a custom program using JMS

topics (i.e. with TIBCO Enterprise Message Service™) in order to test its functionality.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 134 of 156

6.1.2.1. TEST SETUP

1. The EMS Topic Message Detector records messages with a well-defined topic.

2. The Message List Editor is invoked directly from the EMS Topic Message Detector. It lets you edit

the recorded messages and make them look like messages you expect “My Program” to produce.

3. The triggering message that gets feed into the JMS Message Producer can be created the same

way.

6.1.2.2. TEST EXECUTION

4. The XML file is loaded into the JMS Message Producer and the contained messages are published

on the predefined topic recursively as long as specified.

5. The program to be debugged or tested (My Program) maintains one or several subscriptions and

receives the published messages. While performing some tasks, it may send reply messages but

also send independent request messages that target another adapter or application.

6. The JMS Message Producer reports expected reply messages or writes error messages if it does

not receive them.

7. The JMS Message Consumer receives the message from “My Program” and writes them to an

XML file.

8. The expected messages get compared to the messages that were received by the JMS Message

Consumer. The Message Comparator component goes through the predefined comparison rules

and reports the detailed result.

6.1.3. JMS QUEUES TESTING

The figure below shows a test scenario where Opensphere components interact with a custom

program using JMS queues (i.e. with TIBCO Enterprise Message Service™) queues.

 User Manual . Opensphere Release 2.5

Page 135 of 156 copyright © centeractive ag

6.1.3.1. TEST SETUP

1. The EMS Queue Browser records messages from a dedicated JMS queue

2. The Message List Editor is invoked directly from the EMS Queue Browser. It lets you edit the

recorded messages and make them look like messages you expect “My Program” to produce.

3. The triggering message that gets feed into the JMS Message Producer can be created the same

way.

6.1.3.2. TEST EXECUTION

4. The XML file is loaded into the JMS Message Producer and the contained messages are published

on the predefined topic recursively as long as specified.

5. The program to be debugged or tested (My Program) maintains one or several subscriptions and

receives the published messages. While performing some tasks, it may send reply messages but

also send independent request messages that target another adapter or application.

6. The JMS Message Producer reports expected reply messages or writes error messages if it does

not receive them.

7. The JMS Message Consumer receives the message from “My Program” and writes them to an

XML file.

8. The expected messages get compared to the messages that were received by the JMS Message

Consumer. The Message Comparator component goes through the predefined comparison rules

and reports the detailed result.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 136 of 156

6.1.4. DATABASE TESTING

The following scenario points out how a database enabled program could be tested in Opensphere.

6.1.4.1. TEST SETUP

1. The SQL Compare component is used to load some data from a database. This data can now be

edit by the user to produce the expected data. The so prepared data gets then saved to an XML

file

6.1.4.2. TEST EXECUTION

2. An SQL Processor runs some predefined SQL statements on a database

3. “My Program” gets triggered by some data event occurring in the database and reacts by

changing other data in the same database (could also be another database).

4. The SQL Compare component reads the changed data from the database and compares it to the

expected data read from the XML file. The result gets reported in detail.

6.2. TEST STRUCTURE

A test structure is composed by Test suites , test cases and all kind of test steps, the test

suite being the top most node containing a user defined number of test cases, which in turn contain a

set of test steps. Test suites and test cases can be enabled or disabled by simply clicking on the green

(or gray) ball that appears in front of the node icon. Newly created test nodes are enabled by default.

 User Manual . Opensphere Release 2.5

Page 137 of 156 copyright © centeractive ag

If you run a test suite, only its enabled test cases get performed. If you want to run a series of test

suites, Opensphere let you only select enabled test suites.

A new test suite is created through the menu item Project > Add Test Suite or by pressing on the

corresponding button on the main tool bar. When the test suite node gets added to the project

structure tree, it lets you define its name and description in a pop up dialog. Single test cases are then

added by selecting Add Test Case from the pop up menu that appears when right clicking the test

suite node. Alternatively you may also press the button from the main tool bar.

6.2.1. TEST CASE LOGIC

6.2.1.1. TEST FLOW CHART

The logical execution sequence of test steps is defined on the test case level through a test flow chart.

When a new test case is created underneath a test suite, it gets automatically added the mandatory

start state that acts as entry point of every test flow. Any other test steps can then be added to the

flow chart and connected to other steps through a few mouse clicks:

 Left click with the mouse on the desired button in the left located test step tool palette

and again within the flow chart to have a new test step added to it.

 Press the left mouse button when the mouse pointer is at the center of test step

(source), move the mouse to another test step (target) while keeping the mouse button

pressed. Release the button and you get a new connection between the two test steps.

The flow chart allows only forward connections; given a source test step, you may not

target a test step that is already a direct or indirect predecessor of that source.

 Existing test steps and connections among them may be changed or removed from the

flow chart; the start state shape however cannot be removed.

 A test case must have all its test steps connected to become executable

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 138 of 156

6.2.2. TEST STEPS

Test steps belong to a test case and are integrated in its logical flow.

6.2.2.1. TEST STEP INITIALIZATION

Test steps by default are initialized when the owner test case is initialized. The listener of an RV

Subscriber test step for example is set up at initialization; its dispatcher however starts working only

when the step is started. The test initialization can be changed in the test case property dialog. If you

want specific test steps have to be initialized just before running them, select the corresponding

check box on the “Execution Control” tab.

 User Manual . Opensphere Release 2.5

Page 139 of 156 copyright © centeractive ag

6.2.2.2. TEST STEP TYPES

Test steps are of a certain type with specific configurable behavior each. Test steps are owned by a

test case that controls their execution according to the definition made in the test flow chart. The

table below shows test steps that are available; some of them simply wrap existing executable nodes

and behave basically the same as them.

Test Step Description

 Start State Acts as entry point for the test case process flow. Every test case
has exactly one start state shape that is direct or indirect source of
all connections.

 Sleeper Sleeps the specified number of seconds and interrupts the
processing of the test case within the branch where it is located in
the process flow-chart.

 Check/Confirm Interrupts the process flow during a manual intervention. The
process flow continues as soon as the dialog is closed. Processing
may be stopped if the user detects and notifies an error.

 OS Command Wraps the executable node of same name

 RV Publisher Wraps the executable node of same name

 RV Subscriber Wraps the executable node of same name

 RV Application Simulator Wraps the executable node of same name

 JMS Message Producer Wraps the executable node of same name

 JMS Message Consumer Wraps the executable node of same name

 JMS Queue Browser Wraps the executable node of same name

 Web Service Client Wraps the executable node of same name

 Web Service Server Wraps the executable node of same name

 SQL Processor Wraps the executable node of same name

 SQL Comparison Compares the results from two SQL select statements. The result
is reported to the result tab of the test case detail view.

 Message Comparison Compares messages contained in two distinct files and reports the
result to the result tab of the test case detail view.

 File Comparison Compares the content of two distinct files and reports the result
to the result tab of the test case detail view.

6.3. TEST EXECUTION

Test cases as well as test suites can be executed independently by simply select the corresponding

node in the project tree and press the “Run” button on the main tool bar. Test steps are

controlled and executed by the owning test case and cannot be run independently.

If a test suite is executed, it will first simultaneously initialize all its test cases and run them afterwards

in the same order as they appear in the project tree. A test case must finish execution before the next

test case within the sequence is started; only one test case per test suite can be running at a given

time.

Test cases in turn first initialize all dependent test steps before they start executing the defined

process flow. The sequence and parallelism of test step execution is defined in the test case flow chart

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 140 of 156

and also dependent on the execution time and user intervention during the test run. A test step is

started as soon as all preceding test steps have finished execution; preceding test steps are those that

have a connection line pointing to a specific test step. Each test step performs a certain task when it

gets activated. It stops when certain predefined criteria are fulfilled or if the test case as a whole gets

stopped either through user intervention or because another test step got an error.

Test steps within the project tree show their status by a small icon that gets applied on top of the

regular test step icon. The following status icons can appear.

 initializing

 initialized

 running

 terminated with error

 successfully performed

On the test flow chart, those icons appear as well but the status is also rendered by the color of the

test step rectangles. The default yellow color of test steps within the test case flow chart is changed

to gray after its successful initialization. A running test step has a green background meanwhile a test

step that has terminated with an error gets red colored. Test steps that were successfully executed

return to be of yellow color.

6.3.1. MONITORING

During initialization and run of the tests, test progress and status are reported on different levels. The

icon that represents a single node within the project tree changes its appearance depending whether

a test item (test suite, test case or test step) is running, has successfully executed or terminated with

an error.

A dedicated worker panel reports all status changes during the test run using colours that represent

the status (i.e. red text for errors).

Within the test suite detail view, you can see the status of the test suite and all dependent test cases

whereas the test case view presents the same information for all its test steps in a table but also in

the flow chart.

The test case detail view moreover contains a multiple-document interface (MDI) containing the

console windows of every test step that reports detailed processing information. The start step does

not have a console window since it acts only as entry point of the test step flow and does not do any

processing itself.

 User Manual . Opensphere Release 2.5

Page 141 of 156 copyright © centeractive ag

6.3.2. BATCH PROCESSING

Opensphere lets you execute test suites defined in a project from the command-line. The class

com.centeractive.opensphere.batch.OpenSphereBatchTestRunner implements

the functionality for running all active test suites within a specified project file and publishes the

HTML formatted test result to the location of your choice.

The example presented below demonstrates how to run the batch runner through the use of Apache

Ant, a powerful Java-based build tool. You may use additional predefined tasks from the Ant

framework to send notification with the test result, to publish the result to a web server using FTP, to

archive the test result directory and much more. Please consult the Ant documentation to learn more.

Each Opensphere project is supplemented with a sample Ant build.xml file located in the bin/batch

folder. Adjust that file in order to run a specific test:

1. Set the properties listed in the table mentioned below.

2. Set the “project” fileset indicating Opensphere project files (.osp) to run the test suites for.

Property Description Required

openSphereHome Path to the Opensphere installation home directory yes

testReportDir Path of the directory where to store the HTML
formatted test report. This directory will contain an
index.html file once the tests have been executed.

yes

maxRuntimePerTestSuite Defines the maximum number of seconds a test
suite must run before it gets stopped automatically.
The default is 3600 seconds, which is 1 hour.

no

showResult Indicates whether the test result should be shown
within a popping-up browser window as soon as the

no

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 142 of 156

The following listing presents a sample build.xml encompassing all of the aforementioned

configuration options.

<project name="Opensphere Batch Test" default="runOSTest">

 <property environment="env"/>

 <description>

 This Ant build file runs Opensphere tests defined in different project files,

 publishes the testing result to a web server and notifies dedicated people about

 the newly available testing results.

 </description>

 <!-- ~~ -->

 <!-- ~~~~~~~~~~~~~~~~~~~~~~~ OPTIONS TO BE DEFINED BY THE USER ~~~~~~~~~~~~~~~~~~~~~~~~ -->

 <!-- ~~ -->

 <!-- set global properties for this build -->

 <property name="openSphereHome" location="TODO" />

 <property name="testReportBaseDir" location="TODO" />

 <property name="maxRuntimePerTestSuite" value="60" />

 <property name="showResult" value="false" />

 <property name="rvRoot" location="${env.RV_ROOT}" />

 <property name="emsRoot" location="${env.EMS_ROOT}" />

 <!-- declare the projects to execute -->

 <fileset id="projects" dir="TODO">

 <include name="TODO.osp" />

 </fileset>

 <!-- ~~ -->

 <!-- ~~~~~~~~~~~~~~~~~~~~~ DO NOT CHANGE UNLESS REALLY NECESSARY ~~~~~~~~~~~~~~~~~~~~~~ -->

 <!-- ~~ -->

 <!-- set classpath for standalone execution -->

 <path id="classpath">

 <fileset dir="${openSphereHome}/lib/">

 <include name="*.jar" />

 </fileset>

 <pathelement location="${openSphereHome}/gen/classes" />

 <pathelement location="${rvRoot}/lib/tibrvj.jar" />

 <pathelement location="${emsRoot}/lib/tibjms.jar" />

 </path>

 <!-- initializes timestamps and test report directory -->

 <target name="init">

 <tstamp>

 <format property="TODAY" pattern="yyyy-MM-dd" />

 </tstamp>

 <mkdir dir="${testReportBaseDir}" />

 </target>

 <!-- convert the specified fileset to comma-separeted absoulte paths -->

 <pathconvert property="projectPaths" refid="projects" />

 <!-- run Opensphere projects in a separate virtual machine -->

 <target name="runOSTest" depends="init" description="defines the Opensphere test task">

 <java classname="com.centeractive.opensphere.batch.OpenSphereTestTask" fork="true">

testing process has finished. The possible values are
“true” or “false”, “false” being the default value.

failOnError Indicates if the osTest task shall fail in case an
unexpected error occurs while processing one of the
specified Opensphere project files. The possible
values are “true” or “false”, “false” being the default
value. If an unexpected error occurs for every
specified project, the osTest task fails regardless the
value of this attribute.

no

rvRoot Defines the root folder of TIBCO Rendezvous®
product. Do not change if RV_ROOT environmental
variable is set.

yes (for RV)

emsRoot Defines the root folder of TIBCO EMS™ product. . Do
not change if EMS_ROOT environmental variable is
set.

yes (for EMS)

 User Manual . Opensphere Release 2.5

Page 143 of 156 copyright © centeractive ag

 <classpath refid="classpath" />

 <jvmarg value="-DopenSphereHome=${openSphereHome}" />

 <jvmarg value="-DtestReportDir=${testReportBaseDir}/${TODAY}" />

 <jvmarg value="-DmaxRuntimePerTestSuite=${maxRuntimePerTestSuite}" />

 <jvmarg value="-DshowResult=${showResult}" />

 <jvmarg value="-Dfileset=${projectPaths}" />

 </java>

 </target>

 <!-- copies the Ant log file to the test result directory -->

 <target name="copyLogFile" depends="runOSTest" description="copies the log to the test result directory">

</project>

6.4. TEST RESULT

Quick information about the result (successful or failed) of a test suite, a test case or even a single test

step can be obtained from the project tree where the nodes are represented by an icon according to

their execution state. Detailed information however is displayed within the detail view of the nodes.

The test suite detail view for example lists all contained test cases by showing their state, start and

end time as well as the duration of the execution. The top most entry in the list contains this same

information as a summary for the whole test suite.

The test case detail view contains a “Test Result” pane which shows a list with execution information

of all test steps and a top located line for the test case. This looks pretty much the same as the detail

view of the test suite. If the test case contains one or several comparison test steps, the results of

them are displayed above the mentioned list. The screen shot below shows a “Test Result” pane of a

test case that contains a “SQL Comparison” test step.

6.4.1. PUBLISHING

Pressing the “publish” button located in the main toolbar lets you publish one or several test

suites that have been executed. Alternatively this can be achieved by selecting the menu item Testing

> Publish Test Results…

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 144 of 156

Within beside shown dialog simply select the test suites you

want to publish and confirm your choice by pressing the “OK”

button. The selected test suite together with all dependent

test cases will be generated to HTML formatted pages that

can be viewed in a standard web browser.

 User Manual . Opensphere Release 2.5

Page 145 of 156 copyright © centeractive ag

Same as if you were using the project tree within the Opensphere application, you can navigate

between the pages by simply selecting the corresponding node within the tree structure. The sample

pages below give you an impression on how published test cases may look like.

Test suites are published with the aim to share test results with other team members but also for

maintaining a test history. The Opensphere application in fact does not hold the information on test

results over session boundaries; it only maintains the test definition, which includes the test structure,

the test flow and logic of single test steps.

6.4.1.1. CUSTOMIZING

When a test suite is published, some files contained in the directory <Opensphere

HOME>/pubresources are used as template and some other are copied unchanged to the publishing

location. You may for example adapt the background color of the HTML frame page or change the

banner to better reflect the project you are working in. If you edit or replace the corresponding files,

please make first a copy of them to be able to restore the initial environment.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 146 of 156

6.4.1.2. TEST RESULT WEB SERVER

A simple JSP based web application for showing published test results is shipped with Opensphere

and available as web archive under resources\webserver\testreporting.war. This web archive can for

example be copied to the webapps folder of a Tomcat application running on a server. The testing

results on the other hand must be published to the results folder within the unpacked web

application same as Opensphere does it when running in batch mode with the sample Ant build file as

described in the chapter above.

6.5. TEST STEP DETAILS

This section describes the details of individual test step types that are part of a test case and appear in

its graphical test flow.

6.5.1. SLEEPER

The Sleeper test step sleeps the specified number of seconds and

interrupts the processing of the test case within the branch

where it is located in the process flow chart.

The number of seconds the test step has to sleep is defined

within the test step property dialog shown beside.

6.5.2. CHECK/CONFIRM

The Check/Confirm test step interrupts the

process flow during some manual intervention.

When this test step is triggered (started), it

shows a modal dialog with the message that

has previously been defined in the property

dialog. The message may tell the user to just

check something, to prepare some resources or

what ever is needed to successfully run the test

case.

The process flow continues as soon as the

dialog is closed. Processing may be

stopped if the user detects an error

during his intervention. In that case, he

will have to enter the reason that made

him abort the test execution; this text will

be reported in the result pane of the test

case.

 User Manual . Opensphere Release 2.5

Page 147 of 156 copyright © centeractive ag

6.5.3. OS COMMAND

The OS Command test step lets you

define an operating system command

that would otherwise be executed in a

command window or within a console

of the operating system. The

command output is reported to the

test step console at run time. It may

be used as simple information as does

the simple command defined in the

property dialog at the right; it may on

the other hand perform some processing that is required by further executed test steps. On the dialog

you can specify the result codes that indicate successful script execution. Individual codes need to be

separated by a comma each. The test case will be interrupted and be considered as failed in case the

actual script return code is not contained in this field.

The output on the console window of a simple dir command could look like follows. Such output

may be used to check if certain file has been written to a given folder for example. To be able to react

on the information, it would be advisable to add a Check/Confirm test step after such an OS

Command test step.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 148 of 156

6.5.4. EXECUTABLE

The Executable test step executes an independent program that has the extension ‘.exe’ on Windows

operating systems. It may also be used to execute a batch file (‘.bat’) or any other executable file. Its

property dialog looks much like the one of the OS Command test step.

6.5.5. WEB SERVICE SERVER

This test step behaves basically the same as the executable node with the same name. Please consult

the related detailed description. It is good practice to have a web service server located outside of a

test case. To make sure the server is running when the test is executed, a confirmer test step can be

added to the test case flow. Its task is to notice the user that he has to check whether the server is

running.

6.5.6. WEB SERVICE CLIENT

This test step behaves basically the same as the executable node with the same name. Please consult

the related detailed description.

6.5.7. JMS MESSAGE PRODUCER

This test step behaves basically the same as the executable node with the same name. Please consult

the related detailed description.

6.5.8. JMS MESSAGE CONSUMER

This test step behaves basically the same as the executable node with the same name. Please consult

the related detailed description.

6.5.9. JMS QUEUE BROWSER

This test step behaves basically the same as the executable node with the same name. Please consult

the related detailed description.

6.5.10. RV PUBLISHER

This test step behaves basically the same as the executable node with the same name. Please consult

the related detailed description.

6.5.11. RV SUBSCRIBER

This test step behaves basically the same as the executable node with the same name. Please

consult the related detailed description.

6.5.12. RV APPLICATION SIMULATOR

 User Manual . Opensphere Release 2.5

Page 149 of 156 copyright © centeractive ag

This test step behaves basically the same as the executable node with the same name. Please

consult the related detailed description.

6.5.13. SQL QUERY VIEWER

This test step behaves basically the same as the executable node with the same name. Please consult

the related detailed description.

6.5.14. SQL PROCESSOR

This test step behaves basically the same as the executable node with the same name. Please consult

the related detailed description.

6.5.15. SQL COMPARISON

This test step behaves the way it is described in the section “Database Support”. Please consult the

related detailed description.

6.5.16. MESSAGE COMPARISON

This test step compares XML formatted messages contained in two distinct files that must be

specified within the property dialog.

The check box labeled “Pop Up Comparator Dialog” indicates if message comparison should be done

in the Message Compare Editor when the test step is executed.

 If the check box is selected, the Message Compare Editor is displayed containing the

reference messages and the compared messages from the specified files. The user will then

have to execute the message comparison by activating the appropriate button and he will

also be allowed to change the comparison rules and to edit the messages. The comparison

result will be reported to the result pane of the dialog and disappear as soon as it gets

closed. When closing the dialog, the user is free to decide if the message comparison (and

with it the test step) was successful or if it failed. Test step execution with the Message

Compare Editor displayed is especially useful during test case set up.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 150 of 156

 If the check box is not selected, comparison is done automatically and the result is fully

reported to the test case result pane. This mode should always be used for automated

regression tests.

The reference message file is usually selected from the file system since it is supposed to

contain stable data maintained in a protected location. The file name can also be imported through

the message editor where it can be edited in the reference message mode. In some cases

however it could make sense to select an entry from the combo box labeled “Reference Message

File”. This combo box in fact contains the names of all message files that are used in other test steps

inside the same test case.

On the other hand you have to define the message file containing the messages that are compared

with the reference messages. This will likely be a file that has been created by a messaging program

such as the JMS Message Producer/Consumer, the Rendezvous Publisher/Subscriber or a Web Service

Client/Server test step (reply messages). For this reason the combo box labeled “Message File” will

already contain all names of message files defined in such test steps within the same test case. This

file name can also be selected from the file system, through the message editor or the path can be

entered manually.

Select the Compare Mode from the appropriate combo box. This will determine how message fields

are compared in general. The compare mode does not influence whether the send and the reply

subject will be checked for equality between a compared message and the reference message.

Subject comparison is done only in case you select on or both of the appropriate checkbox.

For details about the comparison process and how the test step reports its results, consult the

description of the Message Editors that behind the scenes uses the same functionality.

6.5.16.1. COMPARISON OPTIONS

Compare Mode

Compare all for equality All message fields of the compared messages must be identical with the
message fields of the reference message. This applies to the field names,
the field ID’s, the values and the message structure.

compare all for equality
(include nested XML)

All elements of a compared message must be identical to that of the
reference message. The actual message must not contain fields that are
not present in the reference message. This also the checks the structure
and values of nested XML content.

Compare equality not
structure

All fields of the compared message must be equal to that of the
reference message. Fields that are in the compared message but not in
the reference message are ignored.

Compare defined only Only message fields explicitly defined for comparison are considered. A
message field is defined when the check box “Check” on its node detail
view is selected. The message structure beside the defined fields is not
considered.

Compare all but defined
(inverse comparison)

All message fields not explicitly defined for comparison are considered.

 User Manual . Opensphere Release 2.5

Page 151 of 156 copyright © centeractive ag

Other Options

Excluded Paths Comma separated list of XPath expressions that identify elements (branches) that
must entirely be excluded when comparison is done. Comparison is done on the
XML representation of individual messages. Therefore for being able to define
valid XPath expressions, one has to know about the XML representation of
messages. Useful expressions for Tibco Rendezvous® messages for example
would be “//rvMsgFieldGroup[@name=’^prefixList^’]” or
“//rvMsgFieldGroup[@name=’^tracking^’]”. Excluded paths are considered only
in case the comparison mode is “Compare all for equality”.

6.5.17. FILE COMPARISON

This test step compares the content of two distinct files that must be specified within the property

dialog shown below (Depending on the selected file content type, the dialog has a different look).

The combo box labeled “File Content” lets you define the type of files you want to compare. Current

available types are “text”, “XML” and “CSV”.

The check box labeled “Pop Up Comparator Dialog” is available for XML file content only. It indicates

if message comparison should be done in the XML Editor when the test step is executed.

 If the check box is selected, the XML Editor is displayed containing the content from the

reference file and the compared content from the specified files. The user will then have to

execute the file comparison by activating the appropriate button and he will also be allowed

to change the comparison rules and to edit the file content. The comparison result will be

reported to the result pane of the dialog and disappear as soon as it gets closed. When

closing the dialog, the user is free to decide if the file comparison (and with it the test step)

was successful or if it failed. Test step execution with the XML Editor displayed is especially

useful during test case set up.

 If the check box is not selected, comparison is done automatically and the result is fully

reported to the test case result pane. This mode should always be used for automated

regression tests.

The reference file is usually selected from the file system since it is supposed to contain stable

data maintained in a protected location. The file name can also be imported through the text editor

dialog . In some cases however it could make sense to select an entry from the combo box labeled

“Ref. File”. This combo box contains the names of all files that are used in other test steps inside the

same test case.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 152 of 156

Further you have to define the file containing the data that is compared with the reference data. This

will likely be a file that has been created by a messaging component such as the JMS Message

Producer/Consumer, the Rendezvous Publisher/Subscriber or a Web Service Client test step (reply

messages). For this reason the combo box labeled “File” will already contain all names of message

files defined in such test steps present in the same test case. This file name can also be selected from

the file system, through the editor or the path can be entered manually.

If the content of the file or the reference file has specific character encoding, the corresponding

charset name (i.e. UTF-16) has to be entered in the Character Encoding field that appears right to the

file name. This charset is applied when the file is read in order to be shown in a dialog (i.e. text editor)

and when the comparison is performed. When a file is saved from a dialog however, it always uses

standard encoding and the entered charset is not taken into account.

6.5.17.1. COMPARISON OPTIONS

Depending on the selected content type, the following compare options are available.

Content
Type

Option

text Comment Identifier Specifies how lines with comment are marked in the text file. If
this field contains a value, all lines that start with that value are
considered to be comment and will not be included in the
comparison.

Excluded Lines Specifies the lines that shall not be included in the comparison.
The numbers of the excluded lines need to be separated by a
comma each. The first line number is number one.

XML Compare Mode Compare full structure
All XML elements and attributes of the compared file must be
identical with the ones from reference file.

Comparison Rules
Only XML elements and attributes explicitly defined for
comparison are considered. The message structure beside the
defined elements and attributes is not considered.

Comparison Rules Inversed
All XML elements and attributes not explicitly defined for
comparison are considered, defined ones are ignored.

CSV Column Names Line
Number

Indicates what line within the CSV files contains the column
names. Lines appearing in front of this line will be ignored. The
first line in the file is number one. If the checkbox is not selected,
the column names are generated by Opensphere.

Field Separator Indicates how single fields within the CSV files are separated. This
field can be left empty if the CSV files contain a single column

Comment Identifier Specifies how lines with comment are marked in the CSV file. If
this field contains a value, all lines that start with that value are
considered to be comment and will not be included in the

 User Manual . Opensphere Release 2.5

Page 153 of 156 copyright © centeractive ag

comparison.

Included Columns all
All columns contained in the CSV files will be considered for
comparison.

by name
Only columns with the specified names are considered for
comparison. Individual column names need to be separated by a
comma each.

by position
Only columns at the specified position are considered for
comparison. Individual column positions need to be separated by
a comma each.

Compare Function Defines the function to be applied when comparing individual
fields. The following function are available:

Function Description

equal to The checked value must be the same as the
corresponding reference value.

not equal to The checked value must not be the same as
the corresponding reference value.

less then The checked value must be less then the
corresponding reference value.

greater then The checked value must be greater then the
corresponding reference value.

less or equal
to

The checked value must be less or equal to
the corresponding reference value.

greater or
equal to

The checked value must be greater or equal
to the corresponding reference value.

empty The checked value must be empty, the value
of the corresponding reference value is not
considered.

not empty The checked value must not be empty, the
value of the corresponding reference value is
not considered.

length The length of the checked value must be
identical to the number specified in the
corresponding reference value

contains The checked value must contain the
corresponding reference value.

is contained in The checked value must be contained in the
corresponding reference value.

starts with The checked value must start with the
corresponding reference value.

ends with The checked value must end with the
corresponding reference value.

matches The checked value must match the regular
expression specified in the corresponding
reference value.

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 154 of 156

7. SAMPLES

7.1. SAMPLE PROJECTS

Opensphere is delivered with sample projects that illustrate how the different modules work

together. Most samples are kept simple and cover only the basic functionality of the application. All

sample projects are located within the directory <USER_HOME>/.opensphere/projects/samples and

contain a detailed description that appears when the projects is loaded.

7.2. TIBCO RENDEZVOUS® XML FORMAT

The document below shows a simple Tibco Rendezvous® custom message that has been created from

scratch within the RV Message Editor prior to be saved to the XML file.

<?xml version="1.0" encoding="UTF-8"?>

<!--

 Generated by Opensphere Release 1.4.0 / Tuesday 2005-08-04 21:21:50

-->

<os:msgArray xmlns:os="http://www.centeractive.com/namespaces/opensphere">

 <os:xMsg>

 <rvMsg sendSubject="opensphere.test.person.create" replySubject="">

 <rvMsgFieldGroup name="Person" id="0">

 <rvMsgField name="Title" id="0" type="STRING"><![CDATA[Mr.]]></rvMsgField>

 <rvMsgField name="Name" id="0" type="STRING"><![CDATA[Dufour]]></rvMsgField>

 <rvMsgField name="Firstname" id="0" type="STRING"><![CDATA[Philipe]]></rvMsgField>

 <rvMsgField name="Birthdate" id="0" type="DATETIME">17.03.1971 00:00:00</rvMsgField>

 <rvMsgFieldGroup name="Address" id="0">

 <rvMsgField name="Street" id="0" type="STRING"><![CDATA[Rue de la Gare]]></rvMsgField>

 <rvMsgField name="Housenumber" id="0" type="STRING"><![CDATA[26]]></rvMsgField>

 <rvMsgField name="ZIP Code" id="0" type="STRING"><![CDATA[1010]]></rvMsgField>

 <rvMsgField name="Location" id="0" type="STRING"><![CDATA[Lausanne]]></rvMsgField>

 <rvMsgField name="State" id="0" type="STRING"><![CDATA[VD]]></rvMsgField>

 <rvMsgField name="Country" id="0" type="STRING"><![CDATA[Switzerland]]></rvMsgField>

 </rvMsgFieldGroup>

 </rvMsg>

 </os:xMsg>

</os:msgArray>

 User Manual . Opensphere Release 2.5

Page 155 of 156 copyright © centeractive ag

8. APPENDIX

8.1. DISCLAIMER

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle

and/or its affiliates in the U.S. and other countries.

This product includes software developed by the Apache Software Foundation

(http://www.apache.org/)

Tibco and all related products such as Rendezvous
TM

, EMS
TM

 etc. are trademarks or registered

trademarks of TIBCO Software Inc. in the U.S. and other countries.

Other names may be trademarks of their respective owners.

8.2. TERMS AND ABBREVIATIONS

CM Certified Message Delivery is a TIBCO Rendezvous® protocol. Certified delivery

features offer greater certainty of delivery – even in situations where processes

and their network connections are unstable

DML The SQL Data Manipulation Language is a portion of the SQL standard that is

concerned with manipulating the data in a database as opposed to the

structure of a database. The core verbs for DML are SELECT, INSERT, DELETE,

UPDATE, COMMIT and ROLLBACK

EAI Enterprise Application Integration consists of special software, called

middleware that sits between different applications and intelligently translates

and routes data between them. It eases the frustration with IT felt by business

managers of large corporations who find themselves with many different

systems that don t work well together. As IT is now so strategic for almost every

business, anything that adversely impacts its effectiveness has a business cost.

Therefore, EAI normally brings substantial benefit and financial return to those

organizations that implement it.

EMS The TIBCO Enterprise Message Service
TM

 is a Java Messaging Service (JMS)
implementation.

GUI Graphical User Interface

HTML The HyperText Mark-up Language is a language to specify the structure of

documents used in the Internet

JDBC Java Database Connectivity is a standard vendor-independent Java interface for

connecting to relational databases. It allows you to access a wide range of SQL

http://www.apache.org/

User Manual Opensphere Release 2.5

 copyright © centeractive ag Page 156 of 156

databases with exact same syntax.

Rendezvous TIBCO Rendezvous® software is an industrial-strength messaging tool that

allows application developers to build scalable distributed applications

RV See Rendezvous

rvscript All-purpose scripting tool for TIBCO Rendezvous®. To get a copy of the product,

request it at rvscript@tibco.com

SMT The Source Message Template is a hypothetical inbound message that is used

for defining mappings within a Tibco Rendezvous® simulator process

SQL Structured Query Language that lets you select data from a database

TIBCO TIBCO Software is the leading global provider of business integration solutions

URL The Uniform Resource Locator is a standard way to specify the location of a

resource (i.e. a file) available electronically

XML XML is the Extensible Mark-up Language. It is designed to improve the

functionality of the Web by providing more flexible and adaptable information

identification. It is called extensible because it is not a fixed format like HTML (a

single, predefined mark-up language). Instead, XML is actually a `meta

language' - a language for describing other languages - which lets you design

your own customized mark-up languages for limitless different types of

documents

mailto:rvscript@tibco.com

	1. Introduction
	1.1. Introducing Opensphere
	1.1.1. Overview
	1.1.2. Testing
	1.1.2.1. Testing Framework
	1.1.2.2. Automated Regression Testing

	1.1.3. Tibco Integration
	1.1.3.1. Prerequisites
	1.1.3.2. Persistence and Scripting

	1.1.4. Database Support
	1.1.5. Graphical User Interface
	1.1.5.1. Notification Panes
	1.1.5.2. Consoles

	1.1.6. Tool Options
	1.1.6.1. Paths
	1.1.6.2. File
	1.1.6.3. GUI
	1.1.6.4. Console
	1.1.6.5. JMS Provider
	1.1.6.6. Database/JDBC
	1.1.6.7. Startup

	1.2. Getting Started

	2. Opensphere Projects
	2.1. Project Structure
	2.1.1. File System
	2.1.2. Project Browser

	2.2. Project Tree Nodes
	2.2.1. Project Properties
	2.2.1.1. General
	2.2.1.2. WSDL Cache
	2.2.1.3. SSL Keystore Cache
	2.2.1.4. Tibco
	2.2.1.5. Tibco / Rendezvous (Advanced)

	2.2.2. Exporting and Importing Nodes
	2.2.3. Folder
	2.2.4. Executable Node
	2.2.5. Test Suite
	2.2.6. Test Case
	2.2.7. Test Step

	2.3. Substitution Variables
	2.3.1. String Substitution Variables
	2.3.2. Password Substitution Variables
	2.3.3. String Appender Substitution Variables
	2.3.4. Sequence Substitution Variables
	2.3.5. JavaScript Substitution Variables
	2.3.5.1. Requesting User Input

	2.3.6. Java Bean Method Substitution Variables
	2.3.7. Static Method Substitution Variables
	2.3.8. Derived Substitution Variables
	2.3.9. System Property Substitution Variables
	2.3.10. Environment Variable Substitution Variables

	3. Built-In Editors
	3.1. XML Editor
	3.1.1. Editor Assistants
	3.1.2. Customizing
	3.1.2.1. Example

	3.1.3. XML Comparison
	3.1.3.1. Comparison Rule View

	3.1.4. Comparison Modes
	3.1.4.1. Run Comparison

	3.2. HTML Editor
	3.3. Hexadecimal Editor
	3.4. Object Form Editor
	3.5. Row Set Editor
	3.5.1. SQL Query
	3.5.2. Manually Edited Data

	4. Messaging
	4.1. Messaging Program Nodes
	4.2. Message Editors
	4.2.1. Message List Editor
	4.2.2. Multi Message Document Editor
	4.2.3. Message Comparison
	4.2.4. Comparison Rule Editing
	4.2.4.1. Tree Node Rules
	4.2.4.2. Node Detail Rules
	4.2.4.3. Nested XML Content Rules

	4.2.5. Comparison Process
	4.2.5.1. Comparison Options
	4.2.5.2. Running the Comparison
	4.2.5.3. Comparison Result

	4.3. SOAP Web Services
	4.3.1. WSDL FILE Cache
	4.3.2. Web Service Message Editor
	4.3.3. Web Service Server (SOAP over HTTP)
	4.3.4. Web Service Client (SOAP over HTTP)
	4.3.5. Web Service Client (SOAP over JMS)

	4.4. JMS
	4.4.1. JMS Message Editor
	4.4.1.1. JMS Message Header and Properties
	4.4.1.2. JMS Message Body

	4.4.2. JMS Message Producer
	4.4.2.1. JMS Massage Producer Options
	4.4.2.2. Additional Features

	4.4.3. JMS Message Consumer
	4.4.4. JMS Queue Browser

	4.5. TIBCO Rendezvous
	4.5.1. Rendezvous Message Editor
	4.5.2. RV Publisher
	4.5.2.1. Publisher Options
	4.5.2.2. Additional Features

	4.5.3. RV Subscriber
	4.5.3.1. Subscriber Options
	4.5.3.2. Additional Features

	4.5.4. RV Application Simulator
	4.5.4.1. Additional Features

	4.6. Message Detector
	4.6.1. Message Sequence View
	4.6.2. Destination Summary View
	4.6.3. Tool bar and pop-up menus
	4.6.4. Message Timelines (Filtered Messages)
	4.6.5. Message Event Swapping
	4.6.6. Persistent Listener Definitions
	4.6.6.1. RV Listener
	4.6.6.1.1. Advanced

	4.6.6.2. JMS Topic Listener
	4.6.6.3. JMS Queue Browser
	4.6.6.4. TIBCO EMS™ Monitor

	4.6.7. Detecting tibco EMS™ Queue Messages

	5. Database Support
	5.1. Database Connection
	5.2. SQL Query Viewer
	5.3. SQL Processor
	5.4. SQL Comparison
	5.4.1. Compare Function
	5.4.2. SQL Query
	5.4.3. Manually Edited Reference Data
	5.4.4. Comparison Result

	6. Test Engine
	6.1. Testing Use Cases
	6.1.1. Tibco RV Testing
	6.1.1.1. Test Setup
	6.1.1.2. Test Execution

	6.1.2. JMS Topic Testing
	6.1.2.1. Test Setup
	6.1.2.2. Test Execution

	6.1.3. JMS Queues Testing
	6.1.3.1. Test Setup
	6.1.3.2. Test Execution

	6.1.4. Database Testing
	6.1.4.1. Test Setup
	6.1.4.2. Test Execution

	6.2. Test Structure
	6.2.1. Test Case Logic
	6.2.1.1. Test Flow Chart

	6.2.2. Test Steps
	6.2.2.1. Test Step Initialization
	6.2.2.2. Test Step Types

	6.3. Test Execution
	6.3.1. Monitoring
	6.3.2. Batch Processing

	6.4. Test Result
	6.4.1. Publishing
	6.4.1.1. Customizing
	6.4.1.2. Test Result Web Server

	6.5. Test Step Details
	6.5.1. Sleeper
	6.5.2. Check/Confirm
	6.5.3. OS Command
	6.5.4. Executable
	6.5.5. Web Service Server
	6.5.6. Web Service Client
	6.5.7. JMS Message Producer
	6.5.8. JMS Message Consumer
	6.5.9. JMS Queue Browser
	6.5.10. RV Publisher
	6.5.11. RV Subscriber
	6.5.12. RV Application Simulator
	6.5.13. SQL Query Viewer
	6.5.14. SQL Processor
	6.5.15. SQL Comparison
	6.5.16. Message Comparison
	6.5.16.1. Comparison Options

	6.5.17. File Comparison
	6.5.17.1. Comparison Options

	7. Samples
	7.1. Sample Projects
	7.2. Tibco Rendezvous® XML Format

	8. Appendix
	8.1. Disclaimer
	8.2. Terms and Abbreviations

